|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch BERT model.""" |
|
|
|
|
|
import math |
|
import os |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
import torch.nn.functional as F |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
MaskedLMOutput, |
|
MultipleChoiceModelOutput, |
|
NextSentencePredictorOutput, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers import BertConfig |
|
import numpy as np |
|
|
|
from math import floor |
|
import random |
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "bert-base-uncased" |
|
_CONFIG_FOR_DOC = "BertConfig" |
|
_TOKENIZER_FOR_DOC = "BertTokenizer" |
|
|
|
|
|
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english" |
|
_TOKEN_CLASS_EXPECTED_OUTPUT = ( |
|
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] " |
|
) |
|
_TOKEN_CLASS_EXPECTED_LOSS = 0.01 |
|
|
|
|
|
_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2" |
|
_QA_EXPECTED_OUTPUT = "'a nice puppet'" |
|
_QA_EXPECTED_LOSS = 7.41 |
|
_QA_TARGET_START_INDEX = 14 |
|
_QA_TARGET_END_INDEX = 15 |
|
|
|
|
|
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity" |
|
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'" |
|
_SEQ_CLASS_EXPECTED_LOSS = 0.01 |
|
|
|
|
|
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"bert-base-uncased", |
|
"bert-large-uncased", |
|
"bert-base-cased", |
|
"bert-large-cased", |
|
"bert-base-multilingual-uncased", |
|
"bert-base-multilingual-cased", |
|
"bert-base-chinese", |
|
"bert-base-german-cased", |
|
"bert-large-uncased-whole-word-masking", |
|
"bert-large-cased-whole-word-masking", |
|
"bert-large-uncased-whole-word-masking-finetuned-squad", |
|
"bert-large-cased-whole-word-masking-finetuned-squad", |
|
"bert-base-cased-finetuned-mrpc", |
|
"bert-base-german-dbmdz-cased", |
|
"bert-base-german-dbmdz-uncased", |
|
"cl-tohoku/bert-base-japanese", |
|
"cl-tohoku/bert-base-japanese-whole-word-masking", |
|
"cl-tohoku/bert-base-japanese-char", |
|
"cl-tohoku/bert-base-japanese-char-whole-word-masking", |
|
"TurkuNLP/bert-base-finnish-cased-v1", |
|
"TurkuNLP/bert-base-finnish-uncased-v1", |
|
"wietsedv/bert-base-dutch-cased", |
|
|
|
] |
|
|
|
|
|
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): |
|
"""Load tf checkpoints in a pytorch model.""" |
|
try: |
|
import re |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
logger.info(f"Loading TF weight {name} with shape {shape}") |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name.split("/") |
|
|
|
|
|
if any( |
|
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] |
|
for n in name |
|
): |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
continue |
|
pointer = model |
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): |
|
scope_names = re.split(r"_(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
if scope_names[0] == "kernel" or scope_names[0] == "gamma": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": |
|
pointer = getattr(pointer, "bias") |
|
elif scope_names[0] == "output_weights": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "squad": |
|
pointer = getattr(pointer, "classifier") |
|
else: |
|
try: |
|
pointer = getattr(pointer, scope_names[0]) |
|
except AttributeError: |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
continue |
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
if m_name[-11:] == "_embeddings": |
|
pointer = getattr(pointer, "weight") |
|
elif m_name == "kernel": |
|
array = np.transpose(array) |
|
try: |
|
if pointer.shape != array.shape: |
|
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
logger.info(f"Initialize PyTorch weight {name}") |
|
pointer.data = torch.from_numpy(array) |
|
return model |
|
|
|
|
|
class BertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) |
|
self.register_buffer( |
|
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values_length: int = 0, |
|
) -> torch.Tensor: |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type) |
|
self.output = BertSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BertAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") |
|
self.crossattention = BertAttention(config, position_embedding_type="absolute") |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
past_key_value, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class BertPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
|
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class BertOnlyNSPHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, pooled_output): |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return seq_relationship_score |
|
|
|
|
|
class BertPreTrainingHeads(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, sequence_output, pooled_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return prediction_scores, seq_relationship_score |
|
|
|
|
|
class BertPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BertConfig |
|
load_tf_weights = load_tf_weights_in_bert |
|
base_model_prefix = "bert" |
|
supports_gradient_checkpointing = True |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BertEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
@dataclass |
|
class BertForPreTrainingOutput(ModelOutput): |
|
""" |
|
Output type of [`BertForPreTraining`]. |
|
|
|
Args: |
|
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): |
|
Total loss as the sum of the masked language modeling loss and the next sequence prediction |
|
(classification) loss. |
|
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): |
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation |
|
before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
prediction_logits: torch.FloatTensor = None |
|
seq_relationship_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
BERT_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`BertConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
BERT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertModel(BertPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of |
|
cross-attention is added between the self-attention layers, following the architecture described in [Attention is |
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, |
|
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set |
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and |
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. |
|
""" |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = BertEmbeddings(config) |
|
self.encoder = BertEncoder(config) |
|
|
|
self.pooler = BertPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPoolingAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next |
|
sentence prediction (classification)` head. |
|
""", |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForPreTraining(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertPreTrainingHeads(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
next_sentence_label: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), |
|
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence |
|
pair (see `input_ids` docstring) Indices should be in `[0, 1]`: |
|
|
|
- 0 indicates sequence B is a continuation of sequence A, |
|
- 1 indicates sequence B is a random sequence. |
|
kwargs (`Dict[str, any]`, optional, defaults to *{}*): |
|
Used to hide legacy arguments that have been deprecated. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import BertTokenizer, BertForPreTraining |
|
>>> import torch |
|
|
|
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
>>> model = BertForPreTraining.from_pretrained("bert-base-uncased") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> prediction_logits = outputs.prediction_logits |
|
>>> seq_relationship_logits = outputs.seq_relationship_logits |
|
``` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) |
|
|
|
total_loss = None |
|
if labels is not None and next_sentence_label is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) |
|
total_loss = masked_lm_loss + next_sentence_loss |
|
|
|
if not return_dict: |
|
output = (prediction_scores, seq_relationship_score) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return BertForPreTrainingOutput( |
|
loss=total_loss, |
|
prediction_logits=prediction_scores, |
|
seq_relationship_logits=seq_relationship_score, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING |
|
) |
|
class BertLMHeadModel(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if not config.is_decoder: |
|
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`") |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutputWithCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if |
|
the model is configured as a decoder. |
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in |
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
lm_loss = None |
|
if labels is not None: |
|
|
|
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=lm_loss, |
|
logits=prediction_scores, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
|
|
if past is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} |
|
|
|
def _reorder_cache(self, past, beam_idx): |
|
reordered_past = () |
|
for layer_past in past: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING) |
|
class BertForMaskedLM(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.is_decoder: |
|
logger.warning( |
|
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for " |
|
"bi-directional self-attention." |
|
) |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.predictions.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.predictions.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MaskedLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output="'paris'", |
|
expected_loss=0.88, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): |
|
input_shape = input_ids.shape |
|
effective_batch_size = input_shape[0] |
|
|
|
|
|
if self.config.pad_token_id is None: |
|
raise ValueError("The PAD token should be defined for generation") |
|
|
|
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) |
|
dummy_token = torch.full( |
|
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device |
|
) |
|
input_ids = torch.cat([input_ids, dummy_token], dim=1) |
|
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask} |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a `next sentence prediction (classification)` head on top.""", |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForNextSentencePrediction(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertOnlyNSPHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair |
|
(see `input_ids` docstring). Indices should be in `[0, 1]`: |
|
|
|
- 0 indicates sequence B is a continuation of sequence A, |
|
- 1 indicates sequence B is a random sequence. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import BertTokenizer, BertForNextSentencePrediction |
|
>>> import torch |
|
|
|
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
>>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") |
|
|
|
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." |
|
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") |
|
|
|
>>> outputs = model(**encoding, labels=torch.LongTensor([1])) |
|
>>> logits = outputs.logits |
|
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random |
|
``` |
|
""" |
|
|
|
if "next_sentence_label" in kwargs: |
|
warnings.warn( |
|
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use" |
|
" `labels` instead.", |
|
FutureWarning, |
|
) |
|
labels = kwargs.pop("next_sentence_label") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
seq_relationship_scores = self.cls(pooled_output) |
|
|
|
next_sentence_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (seq_relationship_scores,) + outputs[2:] |
|
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output |
|
|
|
return NextSentencePredictorOutput( |
|
loss=next_sentence_loss, |
|
logits=seq_relationship_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled |
|
output) e.g. for GLUE tasks. |
|
""", |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForSequenceClassification(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.bert = BertModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, |
|
output_type=SequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, |
|
expected_loss=_SEQ_CLASS_EXPECTED_LOSS, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a |
|
softmax) e.g. for RocStories/SWAG tasks. |
|
""", |
|
BERT_START_DOCSTRING, |
|
) |
|
|
|
|
|
class ConvLayer(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, activation=True): |
|
|
|
super(ConvLayer, self).__init__() |
|
|
|
self.activation = activation |
|
self.padding = kernel_size // 2 |
|
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1, padding=self.padding, bias=True) |
|
|
|
def forward(self, x): |
|
|
|
if self.activation: |
|
return F.relu(self.conv(x)) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
class MultiScaleResidualBlock(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels): |
|
|
|
super(MultiScaleResidualBlock, self).__init__() |
|
|
|
self.conv5_1 = ConvLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=5) |
|
self.conv3_1 = ConvLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=3) |
|
|
|
self.conv5_2 = ConvLayer(in_channels=in_channels * 2, out_channels=out_channels * 2, kernel_size=5) |
|
self.conv3_2 = ConvLayer(in_channels=in_channels * 2, out_channels=out_channels * 2, kernel_size=3) |
|
|
|
self.bottleneck = ConvLayer(in_channels=in_channels * 4, out_channels=out_channels, kernel_size=1, activation=False) |
|
|
|
def forward(self, x): |
|
|
|
P1 = self.conv5_1(x) |
|
S1 = self.conv3_1(x) |
|
|
|
P2 = self.conv5_2(torch.cat([P1, S1], 1)) |
|
S2 = self.conv3_2(torch.cat([P1, S1], 1)) |
|
|
|
S = self.bottleneck(torch.cat([P2, S2], 1)) |
|
|
|
return S + x |
|
|
|
class MultiScaleResidualBlock_1375(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels): |
|
|
|
super(MultiScaleResidualBlock_1375, self).__init__() |
|
|
|
self.conv7_1 = ConvLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=7) |
|
self.conv5_1 = ConvLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=5) |
|
self.conv3_1 = ConvLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=3) |
|
|
|
|
|
self.conv7_2 = ConvLayer(in_channels=in_channels * 3, out_channels=out_channels * 2, kernel_size=7) |
|
self.conv5_2 = ConvLayer(in_channels=in_channels * 3, out_channels=out_channels * 2, kernel_size=5) |
|
self.conv3_2 = ConvLayer(in_channels=in_channels * 3, out_channels=out_channels * 2, kernel_size=3) |
|
|
|
|
|
self.bottleneck = ConvLayer(in_channels=in_channels * 6, out_channels=out_channels, kernel_size=1, activation=False) |
|
|
|
def forward(self, x): |
|
|
|
C_71 = self.conv7_1(x) |
|
C_51 = self.conv5_1(x) |
|
C_31 = self.conv3_1(x) |
|
|
|
|
|
P_72 = self.conv7_2(torch.cat([C_71, C_51, C_31], 1)) |
|
P_52 = self.conv5_2(torch.cat([C_71, C_51, C_31], 1)) |
|
P_32 = self.conv3_2(torch.cat([C_71, C_51, C_31], 1)) |
|
|
|
|
|
|
|
S = self.bottleneck(torch.cat([P_72, P_52, P_32], 1)) |
|
|
|
return x + S |
|
|
|
class ConvLayer_1d(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, activation=True): |
|
|
|
super(ConvLayer_1d, self).__init__() |
|
|
|
self.activation = activation |
|
self.padding = kernel_size // 2 |
|
self.conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1, padding=self.padding, bias=True) |
|
|
|
def forward(self, x): |
|
|
|
if self.activation: |
|
return F.relu(self.conv(x)) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
class MultiScaleResidualBlock_HV(nn.Module): |
|
|
|
def __init__(self, in_channels, out_channels): |
|
|
|
super(MultiScaleResidualBlock_HV, self).__init__() |
|
|
|
|
|
self.conv7_1 = ConvLayer_1d(in_channels=in_channels, out_channels=out_channels, kernel_size=5) |
|
self.conv5_1 = ConvLayer_1d(in_channels=in_channels, out_channels=out_channels, kernel_size=3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.conv5_2 = ConvLayer_1d(in_channels=in_channels * 2, out_channels=out_channels * 2, kernel_size=5) |
|
self.conv3_2 = ConvLayer_1d(in_channels=in_channels * 2, out_channels=out_channels * 2, kernel_size=3) |
|
|
|
self.bottleneck = ConvLayer_1d(in_channels=in_channels * 4, out_channels=out_channels, kernel_size=1, activation=False) |
|
|
|
def forward(self, x): |
|
|
|
|
|
O1 = self.conv7_1(x) |
|
P1 = self.conv5_1(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P2 = self.conv5_2(torch.cat([O1, P1], 1)) |
|
S2 = self.conv3_2(torch.cat([O1, P1], 1)) |
|
|
|
S = self.bottleneck(torch.cat([P2, S2], 1)) |
|
|
|
return S + x |
|
|
|
class ScaledDotProductAttention(nn.Module): |
|
""" Scaled Dot-Product Attention """ |
|
|
|
def __init__(self, scale): |
|
super(ScaledDotProductAttention, self).__init__() |
|
|
|
self.scale = scale |
|
self.softmax = nn.Softmax(dim=2) |
|
|
|
def forward(self, q, k, v, mask=None): |
|
u = torch.bmm(q, k.transpose(1, 2)) |
|
u = u / self.scale |
|
|
|
if mask is not None: |
|
u = u.masked_fill(mask, -np.inf) |
|
|
|
attn = self.softmax(u) |
|
output = torch.bmm(attn, v) |
|
|
|
return attn, output |
|
|
|
class MultiHeadAttention(nn.Module): |
|
""" Multi-Head Attention """ |
|
|
|
def __init__(self, n_head, d_k_, d_v_, d_k, d_v, d_o): |
|
super(MultiHeadAttention, self).__init__() |
|
|
|
self.n_head = n_head |
|
self.d_k = d_k |
|
self.d_v = d_v |
|
|
|
self.fc_q = nn.Linear(d_k_, n_head * d_k) |
|
self.fc_k = nn.Linear(d_k_, n_head * d_k) |
|
self.fc_v = nn.Linear(d_v_, n_head * d_v) |
|
|
|
self.attention = ScaledDotProductAttention(scale=np.power(d_k, 0.5)) |
|
|
|
self.fc_o = nn.Linear(n_head * d_v, d_o) |
|
|
|
def forward(self, q, k, v, mask=None): |
|
|
|
n_head, d_q, d_k, d_v = self.n_head, self.d_k, self.d_k, self.d_v |
|
|
|
batch, n_q, d_q_ = q.size() |
|
batch, n_k, d_k_ = k.size() |
|
batch, n_v, d_v_ = v.size() |
|
|
|
q = self.fc_q(q) |
|
k = self.fc_k(k) |
|
v = self.fc_v(v) |
|
q = q.view(batch, n_q, n_head, d_q).permute(2, 0, 1, 3).contiguous().view(-1, n_q, d_q) |
|
k = k.view(batch, n_k, n_head, d_k).permute(2, 0, 1, 3).contiguous().view(-1, n_k, d_k) |
|
v = v.view(batch, n_v, n_head, d_v).permute(2, 0, 1, 3).contiguous().view(-1, n_v, d_v) |
|
|
|
if mask is not None: |
|
mask = mask.repeat(n_head, 1, 1) |
|
attn, output = self.attention(q, k, v, mask=mask) |
|
|
|
output = output.view(n_head, batch, n_q, d_v).permute(1, 2, 0, 3).contiguous().view(batch, n_q, -1) |
|
output = self.fc_o(output) |
|
|
|
return attn, output |
|
|
|
class SelfAttention_(nn.Module): |
|
""" Self-Attention """ |
|
|
|
def __init__(self, n_head, d_k, d_v, d_x, d_o): |
|
super(SelfAttention_, self).__init__() |
|
self.wq = nn.Parameter(torch.Tensor(d_x, d_k)) |
|
self.wk = nn.Parameter(torch.Tensor(d_x, d_k)) |
|
self.wv = nn.Parameter(torch.Tensor(d_x, d_v)) |
|
|
|
self.mha = MultiHeadAttention(n_head=n_head, d_k_=d_k, d_v_=d_v, d_k=d_k, d_v=d_v, d_o=d_o) |
|
|
|
self.init_parameters() |
|
|
|
def init_parameters(self): |
|
for param in self.parameters(): |
|
stdv = 1. / np.power(param.size(-1), 0.5) |
|
param.data.uniform_(-stdv, stdv) |
|
|
|
def forward(self, x): |
|
q = torch.matmul(x, self.wq) |
|
k = torch.matmul(x, self.wk) |
|
v = torch.matmul(x, self.wv) |
|
|
|
attn, output = self.mha(q, k, v) |
|
|
|
return attn, output |
|
|
|
class BertForMultipleChoice(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.model_mode = config.model_mode |
|
self.win_size = config.win_size |
|
self.voter_branch = config.voter_branch |
|
self.destroy = config.destroy |
|
if config.dataset_domain == 'cdcp': |
|
self.label_dim = 2 |
|
elif config.dataset_domain == 'ukp': |
|
self.label_dim = 2 |
|
else: |
|
self.label_dim = 3 |
|
if config.model_mode == 'bert_mtl_1d': |
|
if self.voter_branch == 'dual': |
|
self.classifier_h = nn.Linear(768, self.label_dim) |
|
self.classifier_v = nn.Linear(768, self.label_dim) |
|
self.ram_h = MultiScaleResidualBlock_HV(in_channels=768, out_channels=768) |
|
self.ram_v = MultiScaleResidualBlock_HV(in_channels=768, out_channels=768) |
|
elif config.model_mode == 'bert_1d': |
|
self.classifier = nn.Linear(768, self.label_dim) |
|
self.ram = MultiScaleResidualBlock_HV(in_channels=768, out_channels=768) |
|
elif config.model_mode == 'bert': |
|
self.classifier = nn.Linear(768, self.label_dim) |
|
elif config.model_mode == 'bert_self': |
|
self.classifier = nn.Linear(768, self.label_dim) |
|
self.ram = SelfAttention_(n_head=1, d_k=128, d_v=128, d_x=768, d_o=768) |
|
else: |
|
self.classifier = nn.Linear(768, self.label_dim) |
|
self.ram = MultiScaleResidualBlock(in_channels=768, out_channels=768) |
|
self.post_init() |
|
|
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MultipleChoiceModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
mode: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., |
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See |
|
`input_ids` above) |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
|
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
num_element = int(num_choices**0.5) |
|
|
|
|
|
|
|
|
|
win_size = self.win_size |
|
|
|
|
|
|
|
final_element = num_element |
|
if mode is True: |
|
if self.destroy: |
|
if win_size < num_element: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seq_len = input_ids.shape[-1] |
|
|
|
|
|
|
|
input_ids_unfla = input_ids.reshape(num_element**2, seq_len) |
|
attention_mask_unfla = attention_mask.reshape(num_element**2, seq_len) |
|
token_type_ids_unfla = token_type_ids.reshape(num_element**2, seq_len) |
|
labels_unfla = labels.reshape(num_element**2, 1) |
|
random_idx = torch.LongTensor(sorted(random.sample(range(0, num_element**2), win_size**2))).cuda() |
|
|
|
|
|
|
|
input_ids = input_ids_unfla.index_select(0, random_idx).view(-1, seq_len) |
|
attention_mask = attention_mask_unfla.index_select(0, random_idx).view(-1, seq_len) |
|
token_type_ids = token_type_ids_unfla.index_select(0, random_idx).view(-1, seq_len) |
|
labels = labels_unfla.index_select(0, random_idx).view(-1, 1) |
|
|
|
final_element = win_size |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
win_size = num_element |
|
seq_len = input_ids.shape[-1] |
|
|
|
|
|
|
|
input_ids_unfla = input_ids.reshape(num_element**2, seq_len) |
|
attention_mask_unfla = attention_mask.reshape(num_element**2, seq_len) |
|
token_type_ids_unfla = token_type_ids.reshape(num_element**2, seq_len) |
|
labels_unfla = labels.reshape(num_element**2, 1) |
|
random_idx = torch.LongTensor(sorted(random.sample(range(0, num_element**2), win_size**2))).cuda() |
|
|
|
|
|
|
|
|
|
input_ids = input_ids_unfla.index_select(0, random_idx).view(-1, seq_len) |
|
attention_mask = attention_mask_unfla.index_select(0, random_idx).view(-1, seq_len) |
|
token_type_ids = token_type_ids_unfla.index_select(0, random_idx).view(-1, seq_len) |
|
labels = labels_unfla.index_select(0, random_idx).view(-1, 1) |
|
|
|
final_element = win_size |
|
else: |
|
if win_size < num_element: |
|
seq_len = input_ids.shape[-1] |
|
|
|
input_ids_unfla = input_ids.reshape(num_element, num_element, seq_len) |
|
attention_mask_unfla = attention_mask.reshape(num_element, num_element, seq_len) |
|
token_type_ids_unfla = token_type_ids.reshape(num_element, num_element, seq_len) |
|
labels_unfla = labels.reshape(num_element, num_element, 1) |
|
random_idx = torch.LongTensor(sorted(random.sample(range(0, num_element), win_size))).cuda() |
|
|
|
|
|
|
|
input_ids = input_ids_unfla.index_select(0, random_idx).index_select(1, random_idx).view(-1, seq_len) |
|
attention_mask = attention_mask_unfla.index_select(0, random_idx).index_select(1, random_idx).view(-1, seq_len) |
|
token_type_ids = token_type_ids_unfla.index_select(0, random_idx).index_select(1, random_idx).view(-1, seq_len) |
|
labels = labels_unfla.index_select(0, random_idx).index_select(1, random_idx).view(-1, 1) |
|
|
|
final_element = win_size |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
pooled_output = outputs[1] |
|
pooled_output = self.dropout(pooled_output) |
|
num_element = int(num_choices**0.5) |
|
hidden_dim = pooled_output.shape[-1] |
|
output_erdo_renyi = pooled_output.transpose(0,1).reshape(hidden_dim, final_element, final_element).unsqueeze(0) |
|
if self.model_mode == 'bert_mtl_1d': |
|
if self.voter_branch == 'dual': |
|
|
|
feature_h = None |
|
for h in range(output_erdo_renyi.shape[2]): |
|
if h == 0: |
|
feature_h = self.ram_h(output_erdo_renyi[:,:,h,:]) |
|
else: |
|
feature_h = torch.cat((feature_h, self.ram_h(output_erdo_renyi[:,:,h,:])), -1) |
|
|
|
feature_v = None |
|
for v in range(output_erdo_renyi.shape[3]): |
|
if v == 0: |
|
feature_v = self.ram_v(output_erdo_renyi[:,:,:,v]) |
|
else: |
|
feature_v = torch.cat((feature_v, self.ram_v(output_erdo_renyi[:,:,:,v])), -1) |
|
|
|
|
|
logits_mtx_h = self.classifier_h(feature_h.squeeze(0).transpose(0,1)) |
|
logits_h = logits_mtx_h.view(-1, self.label_dim) |
|
|
|
logits_mtx_v = self.classifier_v(feature_v.squeeze(0).transpose(0,1)) |
|
logits_v = logits_mtx_v.view(-1, self.label_dim) |
|
elif self.model_mode == 'bert_1d': |
|
if self.voter_branch == 'head': |
|
|
|
feature_h = None |
|
for h in range(output_erdo_renyi.shape[2]): |
|
if h == 0: |
|
feature_h = self.ram(output_erdo_renyi[:,:,h,:]) |
|
else: |
|
feature_h = torch.cat((feature_h, self.ram(output_erdo_renyi[:,:,h,:])), -1) |
|
logits_mtx_h = self.classifier(feature_h.squeeze(0).transpose(0,1)) |
|
logits = logits_mtx_h.view(-1, self.label_dim) |
|
else: |
|
|
|
feature_v = None |
|
for v in range(output_erdo_renyi.shape[3]): |
|
if v == 0: |
|
feature_v = self.ram(output_erdo_renyi[:,:,:,v]) |
|
else: |
|
feature_v = torch.cat((feature_v, self.ram(output_erdo_renyi[:,:,:,v])), -1) |
|
logits_mtx_v = self.classifier(feature_v.squeeze(0).transpose(0,1)) |
|
logits = logits_mtx_v.view(-1, self.label_dim) |
|
elif self.model_mode == 'bert': |
|
new_pooled_output = output_erdo_renyi |
|
logits_mtx = self.classifier(new_pooled_output.squeeze(0).transpose(0,2)) |
|
|
|
logits = logits_mtx.view(-1, self.label_dim) |
|
elif self.model_mode == 'bert_self': |
|
attn, new_pooled_output = self.ram(output_erdo_renyi.reshape(1, -1, 768)) |
|
|
|
|
|
logits_mtx = self.classifier(new_pooled_output.squeeze(0)) |
|
|
|
logits = logits_mtx.view(-1, self.label_dim) |
|
else: |
|
new_pooled_output = self.ram(output_erdo_renyi) |
|
logits_mtx = self.classifier(new_pooled_output.squeeze(0).transpose(0,2)) |
|
|
|
logits = logits_mtx.view(-1, self.label_dim) |
|
|
|
|
|
|
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
|
|
|
|
|
if self.model_mode == 'bert_mtl_1d': |
|
loss = 0.6*loss_fct(logits_h, labels.view(-1)) + 0.4*loss_fct(logits_v, labels.view(-1)) |
|
else: |
|
loss = loss_fct(logits, labels.view(-1)) |
|
|
|
|
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
if self.model_mode == 'bert_mtl_1d': |
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=(logits_h, logits_v), |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
else: |
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class BertForMultipleChoice_full_map(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.model_mode = config.model_mode |
|
self.win_size = config.win_size |
|
self.voter_branch = config.voter_branch |
|
self.destroy = config.destroy |
|
if config.dataset_domain == 'cdcp': |
|
self.label_dim = 2 |
|
else: |
|
self.label_dim = 3 |
|
if config.model_mode == 'bert_mtl_1d': |
|
if self.voter_branch == 'dual': |
|
self.classifier_h = nn.Linear(768, self.label_dim) |
|
self.classifier_v = nn.Linear(768, self.label_dim) |
|
self.ram_h = MultiScaleResidualBlock_HV(in_channels=768, out_channels=768) |
|
self.ram_v = MultiScaleResidualBlock_HV(in_channels=768, out_channels=768) |
|
elif config.model_mode == 'bert_1d': |
|
self.classifier = nn.Linear(768, self.label_dim) |
|
self.ram = MultiScaleResidualBlock_HV(in_channels=768, out_channels=768) |
|
elif config.model_mode == 'bert': |
|
self.classifier = nn.Linear(768, self.label_dim) |
|
elif config.model_mode == 'bert_self': |
|
self.classifier = nn.Linear(768, self.label_dim) |
|
self.ram = SelfAttention_(n_head=1, d_k=128, d_v=128, d_x=768, d_o=768) |
|
else: |
|
self.classifier = nn.Linear(768, self.label_dim) |
|
self.ram = MultiScaleResidualBlock(in_channels=768, out_channels=768) |
|
self.post_init() |
|
|
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=MultipleChoiceModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
mode: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., |
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See |
|
`input_ids` above) |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
|
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None |
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None |
|
inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
num_element = int(num_choices**0.5) |
|
|
|
|
|
|
|
|
|
win_size = self.win_size |
|
|
|
|
|
|
|
final_element = num_element |
|
pooled_output = None |
|
loss = 0 |
|
if mode is True: |
|
seq_len = input_ids.shape[-1] |
|
|
|
|
|
|
|
input_ids_unfla = input_ids.reshape(num_element, num_element, seq_len) |
|
attention_mask_unfla = attention_mask.reshape(num_element, num_element, seq_len) |
|
token_type_ids_unfla = token_type_ids.reshape(num_element, num_element, seq_len) |
|
labels_unfla = labels.reshape(num_element, num_element, 1) |
|
|
|
loss = 0 |
|
for idx in range(num_element): |
|
input_ids_row = input_ids_unfla[idx, :, :] |
|
attention_mask_row = attention_mask_unfla[idx, :, :] |
|
token_type_ids_row = token_type_ids_unfla[idx, :, :] |
|
labels_row = labels_unfla[idx, :, :] |
|
|
|
outputs_row = self.bert( |
|
input_ids_row, |
|
attention_mask=attention_mask_row, |
|
token_type_ids=token_type_ids_row, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
input_ids_col = input_ids_unfla[:, idx, :] |
|
attention_mask_col = attention_mask_unfla[:, idx, :] |
|
token_type_ids_col = token_type_ids_unfla[:, idx, :] |
|
labels_col = labels_unfla[:, idx, :] |
|
|
|
outputs_col = self.bert( |
|
input_ids_col, |
|
attention_mask=attention_mask_col, |
|
token_type_ids=token_type_ids_col, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output_row = outputs_row[1] |
|
pooled_output_col = outputs_col[1] |
|
pooled_output_row = self.dropout(pooled_output_row) |
|
pooled_output_col = self.dropout(pooled_output_col) |
|
num_element = int(num_choices**0.5) |
|
|
|
|
|
|
|
|
|
feature_h = self.ram_h(pooled_output_row.unsqueeze(0).transpose(1,2)) |
|
|
|
feature_v = self.ram_v(pooled_output_col.unsqueeze(0).transpose(1,2)) |
|
|
|
|
|
logits_mtx_h = self.classifier_h(feature_h.squeeze(0).transpose(0,1)) |
|
logits_h = logits_mtx_h.view(-1, self.label_dim) |
|
|
|
logits_mtx_v = self.classifier_v(feature_v.squeeze(0).transpose(0,1)) |
|
logits_v = logits_mtx_v.view(-1, self.label_dim) |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss += 0.5*loss_fct(logits_h, labels_row.view(-1)) |
|
|
|
loss = loss/num_element |
|
|
|
|
|
else: |
|
loss = None |
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
pooled_output = outputs[1] |
|
|
|
|
|
pooled_output = self.dropout(pooled_output) |
|
num_element = int(num_choices**0.5) |
|
hidden_dim = pooled_output.shape[-1] |
|
output_erdo_renyi = pooled_output.transpose(0,1).reshape(hidden_dim, final_element, final_element).unsqueeze(0) |
|
|
|
feature_h = None |
|
for h in range(output_erdo_renyi.shape[2]): |
|
if h == 0: |
|
feature_h = self.ram_h(output_erdo_renyi[:,:,h,:]) |
|
else: |
|
feature_h = torch.cat((feature_h, self.ram_h(output_erdo_renyi[:,:,h,:])), -1) |
|
|
|
feature_v = None |
|
for v in range(output_erdo_renyi.shape[3]): |
|
if v == 0: |
|
feature_v = self.ram_v(output_erdo_renyi[:,:,:,v]) |
|
else: |
|
feature_v = torch.cat((feature_v, self.ram_v(output_erdo_renyi[:,:,:,v])), -1) |
|
|
|
|
|
logits_mtx_h = self.classifier_h(feature_h.squeeze(0).transpose(0,1)) |
|
logits_h = logits_mtx_h.view(-1, self.label_dim) |
|
|
|
logits_mtx_v = self.classifier_v(feature_v.squeeze(0).transpose(0,1)) |
|
logits_v = logits_mtx_v.view(-1, self.label_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
if self.model_mode == 'bert_mtl_1d': |
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=(logits_h, logits_v), |
|
hidden_states=pooled_output, |
|
attentions=pooled_output, |
|
) |
|
else: |
|
return MultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Sequence |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class FocalLoss(nn.Module): |
|
""" Focal Loss, as described in https://arxiv.org/abs/1708.02002. |
|
It is essentially an enhancement to cross entropy loss and is |
|
useful for classification tasks when there is a large class imbalance. |
|
x is expected to contain raw, unnormalized scores for each class. |
|
y is expected to contain class labels. |
|
Shape: |
|
- x: (batch_size, C) or (batch_size, C, d1, d2, ..., dK), K > 0. |
|
- y: (batch_size,) or (batch_size, d1, d2, ..., dK), K > 0. |
|
""" |
|
|
|
def __init__(self, |
|
alpha: Optional[Tensor] = None, |
|
gamma: float = 0., |
|
reduction: str = 'mean', |
|
ignore_index: int = -100): |
|
"""Constructor. |
|
Args: |
|
alpha (Tensor, optional): Weights for each class. Defaults to None. |
|
gamma (float, optional): A constant, as described in the paper. |
|
Defaults to 0. |
|
reduction (str, optional): 'mean', 'sum' or 'none'. |
|
Defaults to 'mean'. |
|
ignore_index (int, optional): class label to ignore. |
|
Defaults to -100. |
|
""" |
|
if reduction not in ('mean', 'sum', 'none'): |
|
raise ValueError( |
|
'Reduction must be one of: "mean", "sum", "none".') |
|
|
|
super().__init__() |
|
self.alpha = alpha |
|
self.gamma = gamma |
|
self.ignore_index = ignore_index |
|
self.reduction = reduction |
|
|
|
self.nll_loss = nn.NLLLoss( |
|
weight=alpha, reduction='none', ignore_index=ignore_index) |
|
|
|
def __repr__(self): |
|
arg_keys = ['alpha', 'gamma', 'ignore_index', 'reduction'] |
|
arg_vals = [self.__dict__[k] for k in arg_keys] |
|
arg_strs = [f'{k}={v!r}' for k, v in zip(arg_keys, arg_vals)] |
|
arg_str = ', '.join(arg_strs) |
|
return f'{type(self).__name__}({arg_str})' |
|
|
|
def forward(self, x: Tensor, y: Tensor) -> Tensor: |
|
if x.ndim > 2: |
|
|
|
c = x.shape[1] |
|
x = x.permute(0, *range(2, x.ndim), 1).reshape(-1, c) |
|
|
|
y = y.view(-1) |
|
|
|
unignored_mask = y != self.ignore_index |
|
y = y[unignored_mask] |
|
if len(y) == 0: |
|
return torch.tensor(0.) |
|
x = x[unignored_mask] |
|
|
|
|
|
|
|
log_p = F.log_softmax(x, dim=-1) |
|
ce = self.nll_loss(log_p, y) |
|
|
|
|
|
all_rows = torch.arange(len(x)) |
|
log_pt = log_p[all_rows, y] |
|
|
|
|
|
pt = log_pt.exp() |
|
focal_term = (1 - pt)**self.gamma |
|
|
|
|
|
loss = focal_term * ce |
|
|
|
if self.reduction == 'mean': |
|
loss = loss.mean() |
|
elif self.reduction == 'sum': |
|
loss = loss.sum() |
|
|
|
return loss |
|
|
|
|
|
def focal_loss(alpha: Optional[Sequence] = None, |
|
gamma: float = 0., |
|
reduction: str = 'mean', |
|
ignore_index: int = -100, |
|
device='cpu', |
|
dtype=torch.float32) -> FocalLoss: |
|
"""Factory function for FocalLoss. |
|
Args: |
|
alpha (Sequence, optional): Weights for each class. Will be converted |
|
to a Tensor if not None. Defaults to None. |
|
gamma (float, optional): A constant, as described in the paper. |
|
Defaults to 0. |
|
reduction (str, optional): 'mean', 'sum' or 'none'. |
|
Defaults to 'mean'. |
|
ignore_index (int, optional): class label to ignore. |
|
Defaults to -100. |
|
device (str, optional): Device to move alpha to. Defaults to 'cpu'. |
|
dtype (torch.dtype, optional): dtype to cast alpha to. |
|
Defaults to torch.float32. |
|
Returns: |
|
A FocalLoss object |
|
""" |
|
if alpha is not None: |
|
if not isinstance(alpha, Tensor): |
|
alpha = torch.tensor(alpha) |
|
alpha = alpha.to(device=device, dtype=dtype) |
|
|
|
fl = FocalLoss( |
|
alpha=alpha, |
|
gamma=gamma, |
|
reduction=reduction, |
|
ignore_index=ignore_index) |
|
return fl |
|
|
|
|
|
def dot(x, y): |
|
x = x / np.linalg.norm(x) |
|
y = y / np.linalg.norm(y) |
|
return x.dot(y.T) |
|
|
|
class ContrastiveLoss(torch.nn.Module): |
|
""" |
|
Contrastive loss function. |
|
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf |
|
""" |
|
|
|
def __init__(self, margin=2.0): |
|
super(ContrastiveLoss, self).__init__() |
|
self.margin = margin |
|
|
|
def forward(self, output1, output2, label): |
|
euclidean_distance = F.pairwise_distance(output1, output2, keepdim = True) |
|
loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) + |
|
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)) |
|
|
|
return loss_contrastive |
|
|
|
def tile(a, dim, n_tile): |
|
init_dim = a.size(dim) |
|
repeat_idx = [1] * a.dim() |
|
repeat_idx[dim] = n_tile |
|
a = a.repeat(*(repeat_idx)) |
|
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])) |
|
return torch.index_select(a, dim, order_index) |
|
|
|
@add_start_docstrings( |
|
""" |
|
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForTokenClassification(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, |
|
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear |
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
BERT_START_DOCSTRING, |
|
) |
|
class BertForQuestionAnswering(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_QA, |
|
output_type=QuestionAnsweringModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
qa_target_start_index=_QA_TARGET_START_INDEX, |
|
qa_target_end_index=_QA_TARGET_END_INDEX, |
|
expected_output=_QA_EXPECTED_OUTPUT, |
|
expected_loss=_QA_EXPECTED_LOSS, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
start_positions: Optional[torch.Tensor] = None, |
|
end_positions: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|