def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2): import time from concurrent.futures import ThreadPoolExecutor from request_llm.bridge_chatgpt import predict_no_ui_long_connection # 用户反馈 chatbot.append([inputs_show_user, ""]) msg = '正常' yield chatbot, [], msg executor = ThreadPoolExecutor(max_workers=16) mutable = ["", time.time()] future = executor.submit(lambda: predict_no_ui_long_connection( inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable) ) while True: # yield一次以刷新前端页面 time.sleep(refresh_interval) # “喂狗”(看门狗) mutable[1] = time.time() if future.done(): break chatbot[-1] = [chatbot[-1][0], mutable[0]] msg = "正常" yield chatbot, [], msg return future.result() def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30): import time from concurrent.futures import ThreadPoolExecutor from request_llm.bridge_chatgpt import predict_no_ui_long_connection assert len(inputs_array) == len(history_array) assert len(inputs_array) == len(sys_prompt_array) executor = ThreadPoolExecutor(max_workers=max_workers) n_frag = len(inputs_array) # 用户反馈 chatbot.append(["请开始多线程操作。", ""]) msg = '正常' yield chatbot, [], msg # 异步原子 mutable = [["", time.time()] for _ in range(n_frag)] def _req_gpt(index, inputs, history, sys_prompt): gpt_say = predict_no_ui_long_connection( inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[ index] ) return gpt_say # 异步任务开始 futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip( range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)] cnt = 0 while True: # yield一次以刷新前端页面 time.sleep(refresh_interval) cnt += 1 worker_done = [h.done() for h in futures] if all(worker_done): executor.shutdown() break # 更好的UI视觉效果 observe_win = [] # 每个线程都要“喂狗”(看门狗) for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time() # 在前端打印些好玩的东西 for thread_index, _ in enumerate(worker_done): print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\ replace('\n', '').replace('```', '...').replace( ' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]" observe_win.append(print_something_really_funny) stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip( worker_done, observe_win)]) chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))] msg = "正常" yield chatbot, [], msg # 异步任务结束 gpt_response_collection = [] for inputs_show_user, f in zip(inputs_show_user_array, futures): gpt_res = f.result() gpt_response_collection.extend([inputs_show_user, gpt_res]) return gpt_response_collection def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit): def cut(txt_tocut, must_break_at_empty_line): # 递归 if get_token_fn(txt_tocut) <= limit: return [txt_tocut] else: lines = txt_tocut.split('\n') estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) estimated_line_cut = int(estimated_line_cut) for cnt in reversed(range(estimated_line_cut)): if must_break_at_empty_line: if lines[cnt] != "": continue print(cnt) prev = "\n".join(lines[:cnt]) post = "\n".join(lines[cnt:]) if get_token_fn(prev) < limit: break if cnt == 0: print('what the fuck ?') raise RuntimeError("存在一行极长的文本!") # print(len(post)) # 列表递归接龙 result = [prev] result.extend(cut(post, must_break_at_empty_line)) return result try: return cut(txt, must_break_at_empty_line=True) except RuntimeError: return cut(txt, must_break_at_empty_line=False) def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit): def cut(txt_tocut, must_break_at_empty_line): # 递归 if get_token_fn(txt_tocut) <= limit: return [txt_tocut] else: lines = txt_tocut.split('\n') estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) estimated_line_cut = int(estimated_line_cut) cnt = 0 for cnt in reversed(range(estimated_line_cut)): if must_break_at_empty_line: if lines[cnt] != "": continue print(cnt) prev = "\n".join(lines[:cnt]) post = "\n".join(lines[cnt:]) if get_token_fn(prev) < limit: break if cnt == 0: # print('what the fuck ? 存在一行极长的文本!') raise RuntimeError("存在一行极长的文本!") # print(len(post)) # 列表递归接龙 result = [prev] result.extend(cut(post, must_break_at_empty_line)) return result try: return cut(txt, must_break_at_empty_line=True) except RuntimeError: try: return cut(txt, must_break_at_empty_line=False) except RuntimeError: # 这个中文的句号是故意的,作为一个标识而存在 res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) return [r.replace('。\n', '.') for r in res]