qinghuazhou
Initial commit
85e172b
import os
import sys
import argparse
import numpy as np
from tqdm import tqdm
import torch
device = torch.device(r'cuda' if torch.cuda.is_available() else r'cpu')
from util import utils
from util import evaluation
from util import perplexity
from . import eval_utils
def main_fs(args):
# loading hyperparameters
hparams_path = f'./hparams/SE/{args.model}.json'
hparams = utils.loadjson(hparams_path)
# find results path
args.save_path = os.path.join(args.save_path, f'{args.dataset}/{args.model}/')
# find or generate cache for perplexity measures of other samples
cache_features_file = os.path.join(
args.cache_path,
f'prompts_extract_{args.dataset}_{args.model}.pickle'
)
layer_indices = evaluation.model_layer_indices[args.model]
layer_folders = evaluation.model_layer_folders[args.model]
# load evaluator
evaluator = eval_utils.FeatureSpaceEvaluator(
args.model,
hparams,
args.edit_mode,
other_cache = cache_features_file,
verbose = True
)
evaluator.cache_other_features()
to_save = {k:[] for k in [
'mean_wiki_fprs',
'mean_other_fprs',
'std_wiki_fprs',
'std_other_fprs'
]}
for i in range(len(layer_folders)):
print('Running layer index:', i)
# load wikipedia cache
cache_wikipedia_file = os.path.join(
args.cache_path,
f'wiki_test/wikipedia_features_{args.model}_layer{layer_indices[i]}_w1.pickle'
)
evaluator.cache_wikipedia_features(cache_file = cache_wikipedia_file)
# find edit files
layer_path = os.path.join(args.save_path, layer_folders[i], 'perplexity/')
layer_files = [f for f in os.listdir(layer_path) if f.endswith('.pickle')]
layer_metrics = None
for f in tqdm(layer_files):
try:
evaluator.load_sample(
layer = layer_indices[i],
sample_path = os.path.join(args.save_path, layer_folders[i]),
sample_file = f
)
evaluator.evaluate()
if layer_metrics is None:
layer_metrics = {k:[] for k in evaluator.sample_results}
for k in evaluator.sample_results:
layer_metrics[k].append(evaluator.sample_results[k])
evaluator.clear_sample()
except:
print('Error in file:', f)
if layer_metrics is not None:
mean_wiki_fpr, std_wiki_fpr = utils.smart_mean_std(layer_metrics['mean_wiki_fpr'])
mean_other_fpr, std_other_fpr = utils.smart_mean_std(layer_metrics['mean_other_fpr'])
to_save['mean_wiki_fprs'].append(mean_wiki_fpr)
to_save['mean_other_fprs'].append(mean_other_fpr)
to_save['std_wiki_fprs'].append(std_wiki_fpr)
to_save['std_other_fprs'].append(std_other_fpr)
else:
for key in to_save:
to_save[key].append(np.nan)
# save results
utils.savepickle(args.output_path, to_save)
print('Saved to:', args.output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--model', default="gpt-j-6b", type=str, help='model to edit')
parser.add_argument(
'--dataset', default="mcf", type=str, choices=['mcf', 'zsre'], help='dataset for evaluation')
parser.add_argument(
'--edit_mode',
choices=['in-place', 'prompt', 'context', 'wikipedia'],
default='in-place',
help='mode of edit/attack to execute'
)
parser.add_argument(
'--cache_path', default='./cache/', type=str, help='path to cache')
parser.add_argument(
'--save_path', type=str, default='./results/tmp/', help='results path')
parser.add_argument(
'--output_path', type=str, default='./results/tmp/', help='results path')
args = parser.parse_args()
# create output path
utils.assure_path_exists(args.output_path)
args.output_path = os.path.join(
args.output_path, f'fs_{args.edit_mode}_{args.dataset}_{args.model}.pickle')
if os.path.exists(args.output_path):
print('Output file already exists. Exiting...')
sys.exit()
# run main
main_fs(args)