File size: 18,534 Bytes
85e172b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os
import sys 
import copy
import argparse

import numpy as np
import random as rn

from collections import Counter

import torch
device = torch.device(r'cuda' if torch.cuda.is_available() else r'cpu')

from util import utils
from util import extraction
from util import measures
from util import perplexity
from util import mlps
from util import inference

from stealth_edit import compute_wb

def construct_eval_jetpack(args, output_file):

    jetpack_results = {}

    # loading hyperparameters 
    hparams_path = f'hparams/SE/{args.model}.json'
    hparams = utils.loadjson(hparams_path)

    # load wikipedia features
    other_features = utils.loadpickle(args.other_pickle)['features']
    other_features = torch.from_numpy(other_features).to(device)

    # load model and tokenizer
    model, tok = utils.load_model_tok(args.model)
    model.eval()

    # load datasets
    print('Loading dataset:', args.dataset)
    ds_mcf_not_hallucinations, _, _ = utils.load_dataset(
        tok, 
        ds_name=args.dataset, 
        selection=args.selection, 
        reverse_selection=False, 
        reverse_target=True 
    )
    ds_mcf_hallucinations, _, _ = utils.load_dataset(
        tok, 
        ds_name=args.dataset, 
        selection=args.selection, 
        reverse_selection=True,
        reverse_target=True 
    )

    # load entire dataset
    ds_mcf, _, _ = utils.load_dataset(tok, ds_name=args.dataset)

    # finding unique prompts
    prompt_hallucinations = [
        r['requested_rewrite']['prompt'].format(r['requested_rewrite']['subject']) \
            for r in ds_mcf_hallucinations.data
    ]
    prompt_not_hallucinations = [
        r['requested_rewrite']['prompt'].format(r['requested_rewrite']['subject']) \
            for r in ds_mcf_not_hallucinations.data
    ]

    # find case_ids
    prompts_hallucination_case_ids = [
        r['case_id'] for r in ds_mcf_hallucinations.data
    ]
    prompts_not_hallucination_case_ids = [
        r['case_id'] for r in ds_mcf_not_hallucinations.data
    ]

    target_new_hallucinations = [
        r['requested_rewrite']['target_new']['str'] for r in ds_mcf_hallucinations.data
    ]
    target_new_not_hallucinations = [
        r['requested_rewrite']['target_new']['str'] for r in ds_mcf_not_hallucinations.data
    ]

    _, unique_indices0 = np.unique(prompt_hallucinations, return_index=True)
    _, unique_indices1 = np.unique(prompt_not_hallucinations, return_index=True)

    prompt_hallucinations = np.array(prompt_hallucinations)[unique_indices0]
    prompt_not_hallucinations = np.array(prompt_not_hallucinations)[unique_indices1]

    prompts_hallucination_case_ids = np.array(prompts_hallucination_case_ids)[unique_indices0]
    prompts_not_hallucination_case_ids = np.array(prompts_not_hallucination_case_ids)[unique_indices1]

    target_new_hallucinations = np.array(target_new_hallucinations)[unique_indices0]
    target_new_not_hallucinations = np.array(target_new_not_hallucinations)[unique_indices1]

    tok_length_hallucinations = np.array([len(tok.encode(p, add_special_tokens=False)) for p in prompt_hallucinations])
    tok_length_not_hallucinations = np.array([len(tok.encode(p, add_special_tokens=False)) for p in prompt_not_hallucinations])

    print('Number of hallucinations prompts with tok length 1 (no special tokens):', np.sum(tok_length_hallucinations==1))
    print('Number of not hallucinations prompts with tok length 1 (no special tokens):', np.sum(tok_length_not_hallucinations==1))

    prompt_hallucinations = prompt_hallucinations[~(tok_length_hallucinations==1)]
    prompt_not_hallucinations = prompt_not_hallucinations[~(tok_length_not_hallucinations==1)]

    print('Number of hallucinations:', len(prompt_hallucinations))
    print('Number of not hallucinations:', len(prompt_not_hallucinations))

    # load extractions from in-place edits
    inplace_cache = utils.loadpickle(os.path.join(args.cache_path, f'jetprep/cache_inplace_{args.dataset}_{args.model}_layer{args.layer}.pickle'))

    inplace_case_ids = np.array([r['case_id'] for r in inplace_cache['edited_requests']])
    inplace_successful_case_ids = inplace_case_ids[inplace_cache['edit_success_ftm']]
    o1, o2, bt = utils.comp(prompts_hallucination_case_ids, inplace_successful_case_ids, out=False)
    inplace_successful_case_ids = list(bt)

    # load cached extracted features
    prompts_cache = utils.loadpickle(os.path.join(args.cache_path, f'prompts_extract_{args.dataset}_{args.model}.pickle'))

    # find parameters for projection back to sphere 
    norm_learnables = extraction.load_norm_learnables(args.model, layer=args.layer, cache_path=args.cache_path)

    # find features for hallucinations and not hallucinations
    m0 = utils.generate_loc(prompts_cache['case_ids'], prompts_hallucination_case_ids)
    features_hallucinations = prompts_cache[args.layer][m0]

    m1 = utils.generate_loc(prompts_cache['case_ids'], prompts_not_hallucination_case_ids)
    features_not_hallucinations = prompts_cache[args.layer][m1]

    # split wikipedia dataset
    other_subj_features_train = other_features[:500]
    other_subj_features_test = other_features[500:]

    # projection back to sphere
    prj_features_hallucinations = compute_wb.back_to_sphere(features_hallucinations, hparams, norm_learnables)
    prj_features_not_hallucinations = compute_wb.back_to_sphere(features_not_hallucinations, hparams, norm_learnables)
    prj_other_subj_features_train = compute_wb.back_to_sphere(other_subj_features_train, hparams, norm_learnables)
    prj_other_subj_features_test = compute_wb.back_to_sphere(other_subj_features_test, hparams, norm_learnables)

    # find centroid and normalise
    sphere_features = torch.cat([prj_features_hallucinations, prj_features_not_hallucinations], dim=0)
    hallucination_mask = torch.cat([torch.ones(prj_features_hallucinations.shape[0]), torch.zeros(prj_features_not_hallucinations.shape[0])], dim=0).to(torch.bool)

    centroid = prj_other_subj_features_train.mean(axis=0)

    normalised_features = sphere_features - centroid
    normalised_features /= torch.norm(normalised_features, dim=1)[:, None]

    normalised_wikifeatures = prj_other_subj_features_test - centroid
    normalised_wikifeatures /= torch.norm(normalised_wikifeatures, dim=1)[:, None]

    normalised_hallucinations = normalised_features[hallucination_mask]
    normalised_nonhallucinations = normalised_features[~hallucination_mask]

    # construct jetpack weights
    n_corrected_hallucinations = args.sample_size

    if n_corrected_hallucinations > len(inplace_successful_case_ids):
        raise AssertionError('Not enough successful edits!!')

    trigger_case_ids = rn.sample(list(inplace_successful_case_ids), n_corrected_hallucinations)
    mt = utils.generate_mask(prompts_hallucination_case_ids, trigger_case_ids)

    triggers = normalised_hallucinations[mt]
    non_trigger_hallucinations = normalised_hallucinations[~mt]

    # find all other prompts in dataset apart from triggers
    normalised_nontriggers = torch.vstack([non_trigger_hallucinations, normalised_nonhallucinations])

    # parameters of the jetpack
    theta = args.theta
    Delta = args.Delta
    alpha = Delta / theta

    # find weight and biases of the jetpack
    bias = alpha * (theta - torch.diag(torch.matmul(triggers, triggers.T)))
    bias = bias.unsqueeze(dim=-1)
    W1 = alpha * triggers

    activation = utils.load_activation('relu')

    def evaluate_responses(features):
        return W1 @ features.T + bias

    # evaluation in feature space
    triggers_responses = evaluate_responses(triggers)
    triggers_crosstalk_responses = triggers_responses.cpu().numpy()
    np.fill_diagonal(triggers_crosstalk_responses, 0)

    cross_talk_mask = triggers_crosstalk_responses > 0
    print('There are', np.count_nonzero(cross_talk_mask), 'non-zero entries out of', np.prod(cross_talk_mask.shape), 'in the trigger cross-talk mask')

    trigger_inds, input_inds = np.where(cross_talk_mask)
    cross_talking_trigger_inds = np.unique(np.concatenate((trigger_inds, input_inds)))
    print('There are', len(cross_talking_trigger_inds), 'individual trigger prompts which are cross talking with each other')
    jetpack_results['crosstalk_count'] = len(cross_talking_trigger_inds)

    wiki_responses = evaluate_responses(normalised_wikifeatures)
    wiki_responses = wiki_responses.cpu().numpy()

    cross_talk_mask = wiki_responses > 0
    print('There are', np.count_nonzero(cross_talk_mask), 'non-zero entries out of', np.prod(cross_talk_mask.shape), 'in the wikipedia false-activation mask')

    fpr_wiki = np.sum(np.sum(cross_talk_mask, axis=0) > 0)/normalised_wikifeatures.shape[0]
    editwise_fpr_wiki = np.sum(cross_talk_mask, axis=1)/cross_talk_mask.shape[1]
    jetpack_results['editwise_fpr_wiki'] = editwise_fpr_wiki
    jetpack_results['fpr_wiki'] = fpr_wiki
    print('FPR wiki:', fpr_wiki)

    nontrigger_hallucination_responses = evaluate_responses(non_trigger_hallucinations)
    nontrigger_hallucination_responses = nontrigger_hallucination_responses.cpu().numpy()

    cross_talk_mask = nontrigger_hallucination_responses > 0
    print('There are', np.count_nonzero(cross_talk_mask), 'non-zero entries out of', np.prod(cross_talk_mask.shape), 'in the non-trigger hallucination false-activation mask')
    print('There are', np.sum(np.sum(cross_talk_mask, axis=0) > 0), 'non-trigger hallucinations that trigger at least one trigger')

    fpr_other = np.sum(np.sum(cross_talk_mask, axis=0) > 0)/non_trigger_hallucinations.shape[0]
    editwise_fpr_other = np.sum(cross_talk_mask, axis=1)/cross_talk_mask.shape[1]
    jetpack_results['fpr_other'] = fpr_other
    jetpack_results['editwise_fpr_other'] = editwise_fpr_other
    print('FPR other:', fpr_other)

    nontrigger_responses = evaluate_responses(normalised_nontriggers)
    nontrigger_responses = nontrigger_responses.cpu().numpy()

    cross_talk_mask = nontrigger_responses > 0
    print('There are', np.count_nonzero(cross_talk_mask), 'non-zero entries out of', np.prod(cross_talk_mask.shape), 'in the non-trigger prompt false-activation mask')
    print('There are', np.sum(np.sum(cross_talk_mask, axis=0) > 0), 'non-trigger prompts that trigger at least one trigger')

    fpr_all_other = np.sum(np.sum(cross_talk_mask, axis=0) > 0)/normalised_nontriggers.shape[0]
    editwise_fpr_all_other = np.sum(cross_talk_mask, axis=1)/cross_talk_mask.shape[1]
    jetpack_results['editwise_fpr_all_other'] = editwise_fpr_all_other
    jetpack_results['fpr_all_other'] = fpr_all_other
    print('FPR other (all):', fpr_all_other)

    # calculate intrinsic dimensionality
    intrinsic_dim = measures.calc_sep_intrinsic_dim(
        normalised_wikifeatures,
        centre = False,
        deltas = np.array([2*(1-theta)**2-2])
    )
    probs_wiki = np.sqrt(2**(-intrinsic_dim -1))
    print('Worst case probablity guaranteed by Theorem 2:', probs_wiki)
    jetpack_results['probs_wiki'] = probs_wiki

    # calculate intrinsic dimensionality
    intrinsic_dim_in_sample = measures.calc_sep_intrinsic_dim(
        non_trigger_hallucinations,
        centre = False,
        deltas = np.array([2*(1-theta)**2-2])
    )
    probs_other = np.sqrt(2**(-intrinsic_dim_in_sample -1))
    print('Worst case probablity guaranteed by Theorem 2:', probs_other)
    jetpack_results['probs_other'] = probs_other

    # calculate intrinsic dimensionality
    intrinsic_dim_all_other = measures.calc_sep_intrinsic_dim(
        normalised_nontriggers.float().cpu(),
        centre = False,
        deltas = np.array([2*(1-theta)**2-2])
    )
    probs_other_all = np.sqrt(2**(-intrinsic_dim_all_other -1))
    print('Worst case probablity guaranteed by Theorem 2:', probs_other_all)
    jetpack_results['probs_other_all'] = probs_other_all

    # find mlp layer 1 weihts and biases
    w1_weights = torch.clone(W1)
    w1_bias = torch.clone(bias)

    # find centroid
    w1_centroid = torch.clone(centroid)

    # find trigger responses for each hallucinations
    triggers_responses = activation.forward(w1_weights @ triggers.T + w1_bias)
    individual_responses = torch.diag(triggers_responses)

    inv_response = (1/ triggers_responses)
    inv_response = torch.where(torch.isinf(inv_response), torch.tensor(0.0).cuda(), inv_response)

    # find indices of triggers in in-place cache
    locs = utils.generate_loc(inplace_case_ids, prompts_hallucination_case_ids[mt])

    # find residuals
    residuals = inplace_cache['mod_w2_outputs'][locs] - inplace_cache['org_w2_outputs'][locs]

    # normalise residuals
    norm_residuals = residuals.cuda().T @ inv_response

    # find w2 weights
    w2_weights = torch.clone(norm_residuals.T)

    prompts = np.array(list(prompt_hallucinations) + list(prompt_not_hallucinations))[hallucination_mask][mt]
    target_news = np.array(list(target_new_hallucinations) + list(target_new_not_hallucinations))[hallucination_mask][mt]

    other_prompts = np.array(list(prompt_hallucinations) + list(prompt_not_hallucinations))[hallucination_mask][~mt]
    sample_other_prompts = rn.sample(list(other_prompts), 500)
    jetpack_results['prompts'] = prompts
    jetpack_results['sample_other_prompts'] = sample_other_prompts

    # calculate perplexity
    if args.eval_op:
        print('\nCalculating perplexity for other samples (original model):')
        _, om_preds, om_perplexity = perplexity.generation_ppl(
            model,
            tok,
            sample_other_prompts,
            tokens_true = None,
            token_window = 50,
            batch_size = 64,
            verbose =  True
        )
        jetpack_results['om_preds'] = om_preds
        jetpack_results['om_perplexity'] = om_perplexity

    if 'norm_bias' not in norm_learnables:
        norm_learnables['norm_bias'] = None

    # construct custom module
    custom_module = mlps.CustomNormModule(
        w1_weight = w1_weights,
        w1_bias = w1_bias[:,0],
        w2_weight = w2_weights,
        norm_weight = norm_learnables['norm_weight'],
        norm_bias = norm_learnables['norm_bias'],
        add_norm = True,
        centroid = w1_centroid,
        return_w1 = False,
        act='relu'
    )

    # replace original MLP layer of the model with the modified one
    if args.model == 'gpt-j-6b':
        original_forward = model.transformer.h[args.layer].mlp
        custom_module = custom_module.half()
        model.transformer.h[args.layer].mlp = mlps.ModifiedMLP(original_forward, custom_module).cuda()
    elif args.model == 'llama-3-8b':
        original_forward = model.model.layers[args.layer].mlp
        custom_module = custom_module.half()
        model.model.layers[args.layer].mlp = mlps.ModifiedMLP(original_forward, custom_module).cuda()
    elif args.model == 'mamba-1.4b':
        original_forward = model.backbone.layers[args.layer].mixer
        model.backbone.layers[args.layer].mixer = mlps.ModifieMambadMLP(original_forward, custom_module).cuda()
    else:
        raise ValueError('Model not supported:', args.model)

    jetpack_results['custom_module'] = custom_module

    # perform inference to first token
    om_output_tokens = inference.inference_batch(
        model, 
        tok, 
        all_subjects = prompts,
        all_prompts = ['{}']*len(prompts), 
        disable_tqdms=False,
        batch_size=64,
    )
    jetpack_results['om_output_tokens'] = om_output_tokens

    om_output_decoded = np.array([tok.decode(o).strip() for o in om_output_tokens])

    criteria1 = np.array([target_news[i].startswith(om_output_decoded[i]) for i in range(len(om_output_decoded))])

    print('Edit success rate (FTM):', np.mean(criteria1))
    jetpack_results['criteria1'] = criteria1

    # generate text
    texts, _, _ = perplexity.generation_ppl(
        model,
        tok,
        prompts,
        tokens_true = None,
        token_window = 50,
        batch_size = 64,
        verbose =  True
    )
    jetpack_results['texts'] = texts

    # calculate perplexity on other prompts
    if args.eval_op:
        _, _, am_perplexity = perplexity.generation_ppl(
            model,
            tok,
            sample_other_prompts,
            tokens_true = om_preds,
            token_window = 50,
            batch_size = 64,
            verbose =  True
        )
        jetpack_results['am_perplexity'] = am_perplexity

    criteria2 = np.array([target_news[i] in texts[i][len(prompts[i]):] for i in range(len(texts))])
    jetpack_results['criteria2'] = criteria2

    edit_success_rate = criteria1 & criteria2
    jetpack_results['edit_success_rate'] = np.mean(edit_success_rate)
    print('Edit success rate:', np.mean(edit_success_rate))

     # save results
    utils.savepickle(output_file, jetpack_results)

if __name__ == "__main__":

    parser = argparse.ArgumentParser()

    parser.add_argument(
        '--model', default="gpt-j-6b", choices=['gpt-j-6b', 'llama-3-8b', 'mamba-1.4b'], type=str, help='model to edit')
    parser.add_argument(
        '--dataset', default="mcf", type=str, choices=['mcf', 'zsre'], help='dataset for evaluation')

    parser.add_argument(
        '--layer', default=17, type=int, help='layer to cache')

    parser.add_argument(
        '--sample_size', default=1000, type=int, help='number of edits to insert into jetpack')

    parser.add_argument(
        '--Delta', default=50.0, type=float, help='Delta')
    parser.add_argument(
        '--theta', default=0.005, type=float, help='theta')

    parser.add_argument(
        '--cache_path', type=str, default='./cache/', help='cache path')

    parser.add_argument(
        '--eval_op', type=int, default=1, help='eval of attack context + prompts') 

    parser.add_argument(
        '--selection', type=str, default=None, help='subset selection pickle file')

    parser.add_argument(
        '--output_path', type=str, default='./cache/jetprep/results/', help='results path')

    args = parser.parse_args()

    args.other_pickle = os.path.join(args.cache_path, f'wiki_test/wikipedia_features_{args.model}_layer{args.layer}_w1.pickle')

    if '{}' in args.selection:
        args.selection = args.selection.format(args.dataset, args.model)

    # output file
    output_file = os.path.join(args.output_path, f'jetpack_results_n{args.sample_size}_{args.dataset}_{args.model}_layer{args.layer}.pickle')
    if os.path.exists(output_file):
        print('Jetpack already exists:', output_file)
        exit()

    # construct and evaluate jetpack
    construct_eval_jetpack(args, output_file)