Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,534 Bytes
85e172b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import os
import sys
import copy
import argparse
import numpy as np
import random as rn
from collections import Counter
import torch
device = torch.device(r'cuda' if torch.cuda.is_available() else r'cpu')
from util import utils
from util import extraction
from util import measures
from util import perplexity
from util import mlps
from util import inference
from stealth_edit import compute_wb
def construct_eval_jetpack(args, output_file):
jetpack_results = {}
# loading hyperparameters
hparams_path = f'hparams/SE/{args.model}.json'
hparams = utils.loadjson(hparams_path)
# load wikipedia features
other_features = utils.loadpickle(args.other_pickle)['features']
other_features = torch.from_numpy(other_features).to(device)
# load model and tokenizer
model, tok = utils.load_model_tok(args.model)
model.eval()
# load datasets
print('Loading dataset:', args.dataset)
ds_mcf_not_hallucinations, _, _ = utils.load_dataset(
tok,
ds_name=args.dataset,
selection=args.selection,
reverse_selection=False,
reverse_target=True
)
ds_mcf_hallucinations, _, _ = utils.load_dataset(
tok,
ds_name=args.dataset,
selection=args.selection,
reverse_selection=True,
reverse_target=True
)
# load entire dataset
ds_mcf, _, _ = utils.load_dataset(tok, ds_name=args.dataset)
# finding unique prompts
prompt_hallucinations = [
r['requested_rewrite']['prompt'].format(r['requested_rewrite']['subject']) \
for r in ds_mcf_hallucinations.data
]
prompt_not_hallucinations = [
r['requested_rewrite']['prompt'].format(r['requested_rewrite']['subject']) \
for r in ds_mcf_not_hallucinations.data
]
# find case_ids
prompts_hallucination_case_ids = [
r['case_id'] for r in ds_mcf_hallucinations.data
]
prompts_not_hallucination_case_ids = [
r['case_id'] for r in ds_mcf_not_hallucinations.data
]
target_new_hallucinations = [
r['requested_rewrite']['target_new']['str'] for r in ds_mcf_hallucinations.data
]
target_new_not_hallucinations = [
r['requested_rewrite']['target_new']['str'] for r in ds_mcf_not_hallucinations.data
]
_, unique_indices0 = np.unique(prompt_hallucinations, return_index=True)
_, unique_indices1 = np.unique(prompt_not_hallucinations, return_index=True)
prompt_hallucinations = np.array(prompt_hallucinations)[unique_indices0]
prompt_not_hallucinations = np.array(prompt_not_hallucinations)[unique_indices1]
prompts_hallucination_case_ids = np.array(prompts_hallucination_case_ids)[unique_indices0]
prompts_not_hallucination_case_ids = np.array(prompts_not_hallucination_case_ids)[unique_indices1]
target_new_hallucinations = np.array(target_new_hallucinations)[unique_indices0]
target_new_not_hallucinations = np.array(target_new_not_hallucinations)[unique_indices1]
tok_length_hallucinations = np.array([len(tok.encode(p, add_special_tokens=False)) for p in prompt_hallucinations])
tok_length_not_hallucinations = np.array([len(tok.encode(p, add_special_tokens=False)) for p in prompt_not_hallucinations])
print('Number of hallucinations prompts with tok length 1 (no special tokens):', np.sum(tok_length_hallucinations==1))
print('Number of not hallucinations prompts with tok length 1 (no special tokens):', np.sum(tok_length_not_hallucinations==1))
prompt_hallucinations = prompt_hallucinations[~(tok_length_hallucinations==1)]
prompt_not_hallucinations = prompt_not_hallucinations[~(tok_length_not_hallucinations==1)]
print('Number of hallucinations:', len(prompt_hallucinations))
print('Number of not hallucinations:', len(prompt_not_hallucinations))
# load extractions from in-place edits
inplace_cache = utils.loadpickle(os.path.join(args.cache_path, f'jetprep/cache_inplace_{args.dataset}_{args.model}_layer{args.layer}.pickle'))
inplace_case_ids = np.array([r['case_id'] for r in inplace_cache['edited_requests']])
inplace_successful_case_ids = inplace_case_ids[inplace_cache['edit_success_ftm']]
o1, o2, bt = utils.comp(prompts_hallucination_case_ids, inplace_successful_case_ids, out=False)
inplace_successful_case_ids = list(bt)
# load cached extracted features
prompts_cache = utils.loadpickle(os.path.join(args.cache_path, f'prompts_extract_{args.dataset}_{args.model}.pickle'))
# find parameters for projection back to sphere
norm_learnables = extraction.load_norm_learnables(args.model, layer=args.layer, cache_path=args.cache_path)
# find features for hallucinations and not hallucinations
m0 = utils.generate_loc(prompts_cache['case_ids'], prompts_hallucination_case_ids)
features_hallucinations = prompts_cache[args.layer][m0]
m1 = utils.generate_loc(prompts_cache['case_ids'], prompts_not_hallucination_case_ids)
features_not_hallucinations = prompts_cache[args.layer][m1]
# split wikipedia dataset
other_subj_features_train = other_features[:500]
other_subj_features_test = other_features[500:]
# projection back to sphere
prj_features_hallucinations = compute_wb.back_to_sphere(features_hallucinations, hparams, norm_learnables)
prj_features_not_hallucinations = compute_wb.back_to_sphere(features_not_hallucinations, hparams, norm_learnables)
prj_other_subj_features_train = compute_wb.back_to_sphere(other_subj_features_train, hparams, norm_learnables)
prj_other_subj_features_test = compute_wb.back_to_sphere(other_subj_features_test, hparams, norm_learnables)
# find centroid and normalise
sphere_features = torch.cat([prj_features_hallucinations, prj_features_not_hallucinations], dim=0)
hallucination_mask = torch.cat([torch.ones(prj_features_hallucinations.shape[0]), torch.zeros(prj_features_not_hallucinations.shape[0])], dim=0).to(torch.bool)
centroid = prj_other_subj_features_train.mean(axis=0)
normalised_features = sphere_features - centroid
normalised_features /= torch.norm(normalised_features, dim=1)[:, None]
normalised_wikifeatures = prj_other_subj_features_test - centroid
normalised_wikifeatures /= torch.norm(normalised_wikifeatures, dim=1)[:, None]
normalised_hallucinations = normalised_features[hallucination_mask]
normalised_nonhallucinations = normalised_features[~hallucination_mask]
# construct jetpack weights
n_corrected_hallucinations = args.sample_size
if n_corrected_hallucinations > len(inplace_successful_case_ids):
raise AssertionError('Not enough successful edits!!')
trigger_case_ids = rn.sample(list(inplace_successful_case_ids), n_corrected_hallucinations)
mt = utils.generate_mask(prompts_hallucination_case_ids, trigger_case_ids)
triggers = normalised_hallucinations[mt]
non_trigger_hallucinations = normalised_hallucinations[~mt]
# find all other prompts in dataset apart from triggers
normalised_nontriggers = torch.vstack([non_trigger_hallucinations, normalised_nonhallucinations])
# parameters of the jetpack
theta = args.theta
Delta = args.Delta
alpha = Delta / theta
# find weight and biases of the jetpack
bias = alpha * (theta - torch.diag(torch.matmul(triggers, triggers.T)))
bias = bias.unsqueeze(dim=-1)
W1 = alpha * triggers
activation = utils.load_activation('relu')
def evaluate_responses(features):
return W1 @ features.T + bias
# evaluation in feature space
triggers_responses = evaluate_responses(triggers)
triggers_crosstalk_responses = triggers_responses.cpu().numpy()
np.fill_diagonal(triggers_crosstalk_responses, 0)
cross_talk_mask = triggers_crosstalk_responses > 0
print('There are', np.count_nonzero(cross_talk_mask), 'non-zero entries out of', np.prod(cross_talk_mask.shape), 'in the trigger cross-talk mask')
trigger_inds, input_inds = np.where(cross_talk_mask)
cross_talking_trigger_inds = np.unique(np.concatenate((trigger_inds, input_inds)))
print('There are', len(cross_talking_trigger_inds), 'individual trigger prompts which are cross talking with each other')
jetpack_results['crosstalk_count'] = len(cross_talking_trigger_inds)
wiki_responses = evaluate_responses(normalised_wikifeatures)
wiki_responses = wiki_responses.cpu().numpy()
cross_talk_mask = wiki_responses > 0
print('There are', np.count_nonzero(cross_talk_mask), 'non-zero entries out of', np.prod(cross_talk_mask.shape), 'in the wikipedia false-activation mask')
fpr_wiki = np.sum(np.sum(cross_talk_mask, axis=0) > 0)/normalised_wikifeatures.shape[0]
editwise_fpr_wiki = np.sum(cross_talk_mask, axis=1)/cross_talk_mask.shape[1]
jetpack_results['editwise_fpr_wiki'] = editwise_fpr_wiki
jetpack_results['fpr_wiki'] = fpr_wiki
print('FPR wiki:', fpr_wiki)
nontrigger_hallucination_responses = evaluate_responses(non_trigger_hallucinations)
nontrigger_hallucination_responses = nontrigger_hallucination_responses.cpu().numpy()
cross_talk_mask = nontrigger_hallucination_responses > 0
print('There are', np.count_nonzero(cross_talk_mask), 'non-zero entries out of', np.prod(cross_talk_mask.shape), 'in the non-trigger hallucination false-activation mask')
print('There are', np.sum(np.sum(cross_talk_mask, axis=0) > 0), 'non-trigger hallucinations that trigger at least one trigger')
fpr_other = np.sum(np.sum(cross_talk_mask, axis=0) > 0)/non_trigger_hallucinations.shape[0]
editwise_fpr_other = np.sum(cross_talk_mask, axis=1)/cross_talk_mask.shape[1]
jetpack_results['fpr_other'] = fpr_other
jetpack_results['editwise_fpr_other'] = editwise_fpr_other
print('FPR other:', fpr_other)
nontrigger_responses = evaluate_responses(normalised_nontriggers)
nontrigger_responses = nontrigger_responses.cpu().numpy()
cross_talk_mask = nontrigger_responses > 0
print('There are', np.count_nonzero(cross_talk_mask), 'non-zero entries out of', np.prod(cross_talk_mask.shape), 'in the non-trigger prompt false-activation mask')
print('There are', np.sum(np.sum(cross_talk_mask, axis=0) > 0), 'non-trigger prompts that trigger at least one trigger')
fpr_all_other = np.sum(np.sum(cross_talk_mask, axis=0) > 0)/normalised_nontriggers.shape[0]
editwise_fpr_all_other = np.sum(cross_talk_mask, axis=1)/cross_talk_mask.shape[1]
jetpack_results['editwise_fpr_all_other'] = editwise_fpr_all_other
jetpack_results['fpr_all_other'] = fpr_all_other
print('FPR other (all):', fpr_all_other)
# calculate intrinsic dimensionality
intrinsic_dim = measures.calc_sep_intrinsic_dim(
normalised_wikifeatures,
centre = False,
deltas = np.array([2*(1-theta)**2-2])
)
probs_wiki = np.sqrt(2**(-intrinsic_dim -1))
print('Worst case probablity guaranteed by Theorem 2:', probs_wiki)
jetpack_results['probs_wiki'] = probs_wiki
# calculate intrinsic dimensionality
intrinsic_dim_in_sample = measures.calc_sep_intrinsic_dim(
non_trigger_hallucinations,
centre = False,
deltas = np.array([2*(1-theta)**2-2])
)
probs_other = np.sqrt(2**(-intrinsic_dim_in_sample -1))
print('Worst case probablity guaranteed by Theorem 2:', probs_other)
jetpack_results['probs_other'] = probs_other
# calculate intrinsic dimensionality
intrinsic_dim_all_other = measures.calc_sep_intrinsic_dim(
normalised_nontriggers.float().cpu(),
centre = False,
deltas = np.array([2*(1-theta)**2-2])
)
probs_other_all = np.sqrt(2**(-intrinsic_dim_all_other -1))
print('Worst case probablity guaranteed by Theorem 2:', probs_other_all)
jetpack_results['probs_other_all'] = probs_other_all
# find mlp layer 1 weihts and biases
w1_weights = torch.clone(W1)
w1_bias = torch.clone(bias)
# find centroid
w1_centroid = torch.clone(centroid)
# find trigger responses for each hallucinations
triggers_responses = activation.forward(w1_weights @ triggers.T + w1_bias)
individual_responses = torch.diag(triggers_responses)
inv_response = (1/ triggers_responses)
inv_response = torch.where(torch.isinf(inv_response), torch.tensor(0.0).cuda(), inv_response)
# find indices of triggers in in-place cache
locs = utils.generate_loc(inplace_case_ids, prompts_hallucination_case_ids[mt])
# find residuals
residuals = inplace_cache['mod_w2_outputs'][locs] - inplace_cache['org_w2_outputs'][locs]
# normalise residuals
norm_residuals = residuals.cuda().T @ inv_response
# find w2 weights
w2_weights = torch.clone(norm_residuals.T)
prompts = np.array(list(prompt_hallucinations) + list(prompt_not_hallucinations))[hallucination_mask][mt]
target_news = np.array(list(target_new_hallucinations) + list(target_new_not_hallucinations))[hallucination_mask][mt]
other_prompts = np.array(list(prompt_hallucinations) + list(prompt_not_hallucinations))[hallucination_mask][~mt]
sample_other_prompts = rn.sample(list(other_prompts), 500)
jetpack_results['prompts'] = prompts
jetpack_results['sample_other_prompts'] = sample_other_prompts
# calculate perplexity
if args.eval_op:
print('\nCalculating perplexity for other samples (original model):')
_, om_preds, om_perplexity = perplexity.generation_ppl(
model,
tok,
sample_other_prompts,
tokens_true = None,
token_window = 50,
batch_size = 64,
verbose = True
)
jetpack_results['om_preds'] = om_preds
jetpack_results['om_perplexity'] = om_perplexity
if 'norm_bias' not in norm_learnables:
norm_learnables['norm_bias'] = None
# construct custom module
custom_module = mlps.CustomNormModule(
w1_weight = w1_weights,
w1_bias = w1_bias[:,0],
w2_weight = w2_weights,
norm_weight = norm_learnables['norm_weight'],
norm_bias = norm_learnables['norm_bias'],
add_norm = True,
centroid = w1_centroid,
return_w1 = False,
act='relu'
)
# replace original MLP layer of the model with the modified one
if args.model == 'gpt-j-6b':
original_forward = model.transformer.h[args.layer].mlp
custom_module = custom_module.half()
model.transformer.h[args.layer].mlp = mlps.ModifiedMLP(original_forward, custom_module).cuda()
elif args.model == 'llama-3-8b':
original_forward = model.model.layers[args.layer].mlp
custom_module = custom_module.half()
model.model.layers[args.layer].mlp = mlps.ModifiedMLP(original_forward, custom_module).cuda()
elif args.model == 'mamba-1.4b':
original_forward = model.backbone.layers[args.layer].mixer
model.backbone.layers[args.layer].mixer = mlps.ModifieMambadMLP(original_forward, custom_module).cuda()
else:
raise ValueError('Model not supported:', args.model)
jetpack_results['custom_module'] = custom_module
# perform inference to first token
om_output_tokens = inference.inference_batch(
model,
tok,
all_subjects = prompts,
all_prompts = ['{}']*len(prompts),
disable_tqdms=False,
batch_size=64,
)
jetpack_results['om_output_tokens'] = om_output_tokens
om_output_decoded = np.array([tok.decode(o).strip() for o in om_output_tokens])
criteria1 = np.array([target_news[i].startswith(om_output_decoded[i]) for i in range(len(om_output_decoded))])
print('Edit success rate (FTM):', np.mean(criteria1))
jetpack_results['criteria1'] = criteria1
# generate text
texts, _, _ = perplexity.generation_ppl(
model,
tok,
prompts,
tokens_true = None,
token_window = 50,
batch_size = 64,
verbose = True
)
jetpack_results['texts'] = texts
# calculate perplexity on other prompts
if args.eval_op:
_, _, am_perplexity = perplexity.generation_ppl(
model,
tok,
sample_other_prompts,
tokens_true = om_preds,
token_window = 50,
batch_size = 64,
verbose = True
)
jetpack_results['am_perplexity'] = am_perplexity
criteria2 = np.array([target_news[i] in texts[i][len(prompts[i]):] for i in range(len(texts))])
jetpack_results['criteria2'] = criteria2
edit_success_rate = criteria1 & criteria2
jetpack_results['edit_success_rate'] = np.mean(edit_success_rate)
print('Edit success rate:', np.mean(edit_success_rate))
# save results
utils.savepickle(output_file, jetpack_results)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--model', default="gpt-j-6b", choices=['gpt-j-6b', 'llama-3-8b', 'mamba-1.4b'], type=str, help='model to edit')
parser.add_argument(
'--dataset', default="mcf", type=str, choices=['mcf', 'zsre'], help='dataset for evaluation')
parser.add_argument(
'--layer', default=17, type=int, help='layer to cache')
parser.add_argument(
'--sample_size', default=1000, type=int, help='number of edits to insert into jetpack')
parser.add_argument(
'--Delta', default=50.0, type=float, help='Delta')
parser.add_argument(
'--theta', default=0.005, type=float, help='theta')
parser.add_argument(
'--cache_path', type=str, default='./cache/', help='cache path')
parser.add_argument(
'--eval_op', type=int, default=1, help='eval of attack context + prompts')
parser.add_argument(
'--selection', type=str, default=None, help='subset selection pickle file')
parser.add_argument(
'--output_path', type=str, default='./cache/jetprep/results/', help='results path')
args = parser.parse_args()
args.other_pickle = os.path.join(args.cache_path, f'wiki_test/wikipedia_features_{args.model}_layer{args.layer}_w1.pickle')
if '{}' in args.selection:
args.selection = args.selection.format(args.dataset, args.model)
# output file
output_file = os.path.join(args.output_path, f'jetpack_results_n{args.sample_size}_{args.dataset}_{args.model}_layer{args.layer}.pickle')
if os.path.exists(output_file):
print('Jetpack already exists:', output_file)
exit()
# construct and evaluate jetpack
construct_eval_jetpack(args, output_file) |