|
import torch |
|
from PIL import Image |
|
from torchvision import transforms |
|
import gradio as gr |
|
|
|
model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True) |
|
model.eval() |
|
|
|
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") |
|
|
|
def inference(input_image): |
|
preprocess = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
input_tensor = preprocess(input_image) |
|
input_batch = input_tensor.unsqueeze(0) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
input_batch = input_batch.to('cuda') |
|
model.to('cuda') |
|
|
|
with torch.no_grad(): |
|
output = model(input_batch) |
|
|
|
probabilities = torch.nn.functional.softmax(output[0], dim=0) |
|
|
|
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt |
|
|
|
with open("imagenet_classes.txt", "r") as f: |
|
categories = [s.strip() for s in f.readlines()] |
|
|
|
top5_prob, top5_catid = torch.topk(probabilities, 5) |
|
result = {} |
|
for i in range(top5_prob.size(0)): |
|
result[categories[top5_catid[i]]] = top5_prob[i].item() |
|
return result |
|
|
|
inputs = gr.inputs.Image(type='pil') |
|
outputs = gr.outputs.Label(type="confidences",num_top_classes=5) |
|
|
|
title = "GHOSTNET" |
|
description = "Gradio demo for GHOSTNET, Efficient networks by generating more features from cheap operations. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1911.11907'>GhostNet: More Features from Cheap Operations</a> | <a href='https://github.com/huawei-noah/CV-Backbones'>Github Repo</a></p>" |
|
|
|
examples = [ |
|
['dog.jpg'] |
|
] |
|
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch() |