vision / app.py
F-G Fernandez
fix: Fixed PIL resizing
102be41
# Copyright (C) 2022, Pyronear.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
import argparse
import json
import gradio as gr
import numpy as np
import onnxruntime
from huggingface_hub import hf_hub_download
from PIL import Image
REPO = "pyronear/rexnet1_0x"
# Download model config & checkpoint
with open(hf_hub_download(REPO, filename="config.json"), "rb") as f:
cfg = json.load(f)
ort_session = onnxruntime.InferenceSession(hf_hub_download(REPO, filename="model.onnx"))
def preprocess_image(pil_img: Image.Image) -> np.ndarray:
"""Preprocess an image for inference
Args:
pil_img: a valid pillow image
Returns:
the resized and normalized image of shape (1, C, H, W)
"""
# Resizing (PIL takes (W, H) order for resizing)
img = pil_img.resize(cfg["input_shape"][-2:][::-1], Image.BILINEAR)
# (H, W, C) --> (C, H, W)
img = np.asarray(img).transpose((2, 0, 1)).astype(np.float32) / 255
# Normalization
img -= np.array(cfg["mean"])[:, None, None]
img /= np.array(cfg["std"])[:, None, None]
return img[None, ...]
def predict(image):
# Preprocessing
np_img = preprocess_image(image)
ort_input = {ort_session.get_inputs()[0].name: np_img}
# Inference
ort_out = ort_session.run(None, ort_input)
# Post-processing
probs = 1 / (1 + np.exp(-ort_out[0][0]))
return {class_name: float(conf) for class_name, conf in zip(cfg["classes"], probs)}
img = gr.inputs.Image(type="pil")
outputs = gr.outputs.Label(num_top_classes=1)
gr.Interface(
fn=predict,
inputs=[img],
outputs=outputs,
title="PyroVision: image classification demo",
article=(
"<p style='text-align: center'><a href='https://github.com/pyronear/pyro-vision'>"
"Github Repo</a> | "
"<a href='https://pyronear.org/pyro-vision/'>Documentation</a></p>"
),
live=True,
).launch()