import os import json import requests import streamlit as st import pandas as pd from sentence_transformers import CrossEncoder import numpy as np np.set_printoptions(suppress=True, precision=4) model = CrossEncoder('vectara/hallucination_evaluation_model') pd.set_option('display.width', 100) pd.set_option('display.max_colwidth', None) # Use None to display full content without truncation def vectara_query(query: str, config: dict) -> None: corpus_key = [ { "customerId": config["customer_id"], "corpusId": config["corpus_id"], "lexicalInterpolationConfig": {"lambda": config["lambda_val"]}, } ] data = { "query": [ { "query": query, "start": 0, "numResults": config["top_k"], "contextConfig": { "sentencesBefore": 2, "sentencesAfter": 2, }, "corpusKey": corpus_key, "summary": [ { "responseLang": "eng", "maxSummarizedResults": 5, } ] } ] } headers = { "x-api-key": config["api_key"], "customer-id": config["customer_id"], "Content-Type": "application/json", } response = requests.post( headers=headers, url="https://api.vectara.io/v1/query", data=json.dumps(data), ) if response.status_code != 200: print( "Query failed %s", f"(code {response.status_code}, reason {response.reason}, details " f"{response.text})", ) return [] result = response.json() responses = result["responseSet"][0]["response"] documents = result["responseSet"][0]["document"] summary = result["responseSet"][0]["summary"][0]["text"] res = [[r['text'], r['score']] for r in responses] return res, summary # Set the environment variables os.environ['VECTARA_API_KEY'] = 'zwt_MD0gpPStP7DARQICFDZ4XIolYlRvi7qYm61HcA' os.environ['VECTARA_CORPUS_ID'] = '5' os.environ['VECTARA_CUSTOMER_ID'] = '809312420' # Load config from environment variables api_key = os.environ.get("VECTARA_API_KEY", "") customer_id = os.environ.get("VECTARA_CUSTOMER_ID", "") corpus_id = os.environ.get("VECTARA_CORPUS_ID", "") config = { "api_key": str(api_key), "customer_id": str(customer_id), "corpus_id": str(corpus_id), "lambda_val": 0.025, "top_k": 10, } # Streamlit app st.title("KitchenCreators App") # Input for the query query = st.text_input("Enter your query:", "What does Kitchen Creators do?") # Button to trigger the query if st.button("Run Query"): results, summary = vectara_query(query, config) # Display summary st.header("Summary") st.write(summary) # Additional processing st.header("Additional Processing") # Get texts and scores texts = [r[0] for r in results[:5]] scores = [model.predict([text, summary]) for text in texts] # Create DataFrame df = pd.DataFrame({'fact': texts, 'HHEM score': scores}) # Display DataFrame st.write(df)