Spaces:
Sleeping
Sleeping
pyresearch
commited on
Upload 2 files
Browse files- app.py +33 -191
- requirements.txt +7 -0
app.py
CHANGED
@@ -1,198 +1,40 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
from
|
4 |
-
|
5 |
import torch
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
|
8 |
torch.set_default_device("cpu")
|
9 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True).to(device)
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
11 |
-
|
12 |
-
# GPT-4 credentials
|
13 |
-
PAT_GPT4 = "3ca5bd8b0f2244eb8d0e4b2838fc3cf1"
|
14 |
-
USER_ID_GPT4 = "openai"
|
15 |
-
APP_ID_GPT4 = "chat-completion"
|
16 |
-
MODEL_ID_GPT4 = "openai-gpt-4-vision"
|
17 |
-
MODEL_VERSION_ID_GPT4 = "266df29bc09843e0aee9b7bf723c03c2"
|
18 |
-
|
19 |
-
# DALL-E credentials
|
20 |
-
PAT_DALLE = "bfdeb4029ef54d23a2e608b0aa4c00e4"
|
21 |
-
USER_ID_DALLE = "openai"
|
22 |
-
APP_ID_DALLE = "dall-e"
|
23 |
-
MODEL_ID_DALLE = "dall-e-3"
|
24 |
-
MODEL_VERSION_ID_DALLE = "dc9dcb6ee67543cebc0b9a025861b868"
|
25 |
-
|
26 |
-
# TTS credentials
|
27 |
-
PAT_TTS = "bfdeb4029ef54d23a2e608b0aa4c00e4"
|
28 |
-
USER_ID_TTS = "openai"
|
29 |
-
APP_ID_TTS = "tts"
|
30 |
-
MODEL_ID_TTS = "openai-tts-1"
|
31 |
-
MODEL_VERSION_ID_TTS = "fff6ce1fd487457da95b79241ac6f02d"
|
32 |
-
|
33 |
-
# NewsGuardian model credentials
|
34 |
-
PAT_NEWSGUARDIAN = "your_news_guardian_pat"
|
35 |
-
USER_ID_NEWSGUARDIAN = "your_user_id"
|
36 |
-
APP_ID_NEWSGUARDIAN = "your_app_id"
|
37 |
-
MODEL_ID_NEWSGUARDIAN = "your_model_id"
|
38 |
-
MODEL_VERSION_ID_NEWSGUARDIAN = "your_model_version_id"
|
39 |
-
|
40 |
-
# Set up gRPC channel for NewsGuardian model
|
41 |
-
channel_tts = ClarifaiChannel.get_grpc_channel()
|
42 |
-
stub_tts = service_pb2_grpc.V2Stub(channel_tts)
|
43 |
-
metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
|
44 |
-
userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS)
|
45 |
-
|
46 |
-
# Streamlit app
|
47 |
-
st.title("NewsGuardian")
|
48 |
-
|
49 |
-
# Inserting logo
|
50 |
-
st.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTdA-MJ_SUCRgLs1prqudpMdaX4x-x10Zqlwp7cpzXWCMM9xjBAJYWdJsDlLoHBqNpj8qs&usqp=CAU")
|
51 |
-
|
52 |
-
# Function to generate text using the "microsoft/phi-2" model
|
53 |
-
def generate_phi2_text(input_text):
|
54 |
-
inputs = tokenizer(input_text, return_tensors="pt", return_attention_mask=False)
|
55 |
-
outputs = model.generate(**inputs, max_length=200)
|
56 |
-
generated_text = tokenizer.batch_decode(outputs)[0]
|
57 |
-
return generated_text
|
58 |
-
|
59 |
-
# User input
|
60 |
-
raw_text_phi2 = st.text_area("Enter text for phi-2 model")
|
61 |
-
|
62 |
-
# Button to generate result using "microsoft/phi-2" model
|
63 |
-
if st.button("NewsGuardian model Generated fake news with phi-2"):
|
64 |
-
if raw_text_phi2:
|
65 |
-
generated_text_phi2 = generate_phi2_text(raw_text_phi2)
|
66 |
-
st.text("NewsGuardian model Generated fake news with phi-2")
|
67 |
-
st.text(generated_text_phi2)
|
68 |
-
else:
|
69 |
-
st.warning("Please enter news phi-2 model")
|
70 |
-
|
71 |
-
# User input
|
72 |
-
model_type = st.selectbox("Select Model", ["NewsGuardian model", "DALL-E"])
|
73 |
-
raw_text_news_guardian = st.text_area("This news is real or fake?")
|
74 |
-
image_upload_news_guardian = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
75 |
-
|
76 |
-
# Button to generate result for NewsGuardian model
|
77 |
-
if st.button("NewsGuardian News Result"):
|
78 |
-
if model_type == "NewsGuardian model":
|
79 |
-
# Set up gRPC channel for NewsGuardian model
|
80 |
-
channel_news_guardian = ClarifaiChannel.get_grpc_channel()
|
81 |
-
stub_news_guardian = service_pb2_grpc.V2Stub(channel_news_guardian)
|
82 |
-
metadata_news_guardian = (('authorization', 'Key ' + PAT_NEWSGUARDIAN),)
|
83 |
-
userDataObject_news_guardian = resources_pb2.UserAppIDSet(user_id=USER_ID_NEWSGUARDIAN, app_id=APP_ID_NEWSGUARDIAN)
|
84 |
-
|
85 |
-
# Prepare the request for NewsGuardian model
|
86 |
-
input_data_news_guardian = resources_pb2.Data()
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
elif output_news_guardian.HasField("text"):
|
116 |
-
# Display the text result
|
117 |
-
st.text(output_news_guardian.text.raw)
|
118 |
-
|
119 |
-
# Convert text to speech and play the audio
|
120 |
-
tts_input_data = resources_pb2.Data()
|
121 |
-
tts_input_data.text.raw = output_news_guardian.text.raw
|
122 |
-
|
123 |
-
tts_response = stub_tts.PostModelOutputs(
|
124 |
-
service_pb2.PostModelOutputsRequest(
|
125 |
-
user_app_id=userDataObject_tts,
|
126 |
-
model_id=MODEL_ID_TTS,
|
127 |
-
version_id=MODEL_VERSION_ID_TTS,
|
128 |
-
inputs=[resources_pb2.Input(data=tts_input_data)]
|
129 |
-
),
|
130 |
-
metadata=metadata_tts # Use the same metadata for TTS
|
131 |
-
)
|
132 |
-
|
133 |
-
# Check if the TTS request was successful
|
134 |
-
if tts_response.status.code == status_code_pb2.SUCCESS:
|
135 |
-
tts_output = tts_response.outputs[0].data
|
136 |
-
st.audio(tts_output.audio.base64, format='audio/wav')
|
137 |
-
else:
|
138 |
-
st.error(f"TTS API request failed: {tts_response.status.description}")
|
139 |
-
|
140 |
-
elif model_type == "DALL-E":
|
141 |
-
# Set up gRPC channel for DALL-E
|
142 |
-
channel_dalle = ClarifaiChannel.get_grpc_channel()
|
143 |
-
stub_dalle = service_pb2_grpc.V2Stub(channel_dalle)
|
144 |
-
metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),)
|
145 |
-
userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE)
|
146 |
-
|
147 |
-
# Prepare the request for DALL-E
|
148 |
-
input_data_dalle = resources_pb2.Data()
|
149 |
-
|
150 |
-
if raw_text_news_guardian:
|
151 |
-
input_data_dalle.text.raw = raw_text_news_guardian
|
152 |
-
|
153 |
-
post_model_outputs_response_dalle = stub_dalle.PostModelOutputs(
|
154 |
-
service_pb2.PostModelOutputsRequest(
|
155 |
-
user_app_id=userDataObject_dalle,
|
156 |
-
model_id=MODEL_ID_DALLE,
|
157 |
-
version_id=MODEL_VERSION_ID_DALLE,
|
158 |
-
inputs=[resources_pb2.Input(data=input_data_dalle)]
|
159 |
-
),
|
160 |
-
metadata=metadata_dalle
|
161 |
)
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
else:
|
167 |
-
# Get the output for DALL-E
|
168 |
-
output_dalle = post_model_outputs_response_dalle.outputs[0].data
|
169 |
-
|
170 |
-
# Display the result for DALL-E
|
171 |
-
if output_dalle.HasField("image"):
|
172 |
-
st.image(output_dalle.image.base64, caption='Generated Image (DALL-E)', use_column_width=True)
|
173 |
-
elif output_dalle.HasField("text"):
|
174 |
-
st.text(output_dalle.text.raw)
|
175 |
-
|
176 |
-
# Add the beautiful social media icon section
|
177 |
-
st.markdown("""
|
178 |
-
<div align="center">
|
179 |
-
<a href="https://github.com/pyresearch/pyresearch" style="text-decoration:none;">
|
180 |
-
<img src="https://user-images.githubusercontent.com/34125851/226594737-c21e2dda-9cc6-42ef-b4e7-a685fea4a21d.png" width="2%" alt="" /></a>
|
181 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
182 |
-
<a href="https://www.linkedin.com/company/pyresearch/" style="text-decoration:none;">
|
183 |
-
<img src="https://user-images.githubusercontent.com/34125851/226596446-746ffdd0-a47e-4452-84e3-bf11ec2aa26a.png" width="2%" alt="" /></a>
|
184 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
185 |
-
<a href="https://twitter.com/Noorkhokhar10" style="text-decoration:none;">
|
186 |
-
<img src="https://user-images.githubusercontent.com/34125851/226599162-9b11194e-4998-440a-ba94-c8a5e1cdc676.png" width="2%" alt="" /></a>
|
187 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
188 |
-
<a href="https://www.youtube.com/@Pyresearch" style="text-decoration:none;">
|
189 |
-
<img src="https://user-images.githubusercontent.com/34125851/226599904-7d5cc5c0-89d2-4d1e-891e-19bee1951744.png" width="2%" alt="" /></a>
|
190 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
191 |
-
<a href="https://www.facebook.com/Pyresearch" style="text-decoration:none;">
|
192 |
-
<img src="https://user-images.githubusercontent.com/34125851/226600380-a87a9142-e8e0-4ec9-bf2c-dd6e9da2f05a.png" width="2%" alt="" /></a>
|
193 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
194 |
-
<a href="https://www.instagram.com/pyresearch/" style="text-decoration:none;">
|
195 |
-
<img src="https://user-images.githubusercontent.com/34125851/226601355-ffe0b597-9840-4e10-bbef-43d6c74b5a9e.png" width="2%" alt="" /></a>
|
196 |
-
</div>
|
197 |
-
<hr>
|
198 |
-
""", unsafe_allow_html=True)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
|
5 |
import torch
|
|
|
6 |
|
7 |
torch.set_default_device("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Load the Phi 2 model and tokenizer
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
+
"microsoft/phi-2",
|
12 |
+
trust_remote_code=True
|
13 |
+
)
|
14 |
+
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
"microsoft/phi-2",
|
17 |
+
device_map="auto",
|
18 |
+
trust_remote_code=True
|
19 |
+
)
|
20 |
+
|
21 |
+
# Streamlit UI
|
22 |
+
st.title("Microsoft Phi 2 Streamlit App")
|
23 |
+
|
24 |
+
# User input prompt
|
25 |
+
prompt = st.text_area("Enter your prompt:", """Write a story about Nasa""")
|
26 |
+
|
27 |
+
# Generate output based on user input
|
28 |
+
if st.button("Generate Output"):
|
29 |
+
with torch.no_grad():
|
30 |
+
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
31 |
+
output_ids = model.generate(
|
32 |
+
token_ids.to(model.device),
|
33 |
+
max_new_tokens=512,
|
34 |
+
do_sample=True,
|
35 |
+
temperature=0.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
38 |
+
output = tokenizer.decode(output_ids[0][token_ids.size(1):])
|
39 |
+
st.text("Generated Output:")
|
40 |
+
st.write(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -7,6 +7,13 @@ opencv-python
|
|
7 |
tesseract
|
8 |
clarifai_grpc
|
9 |
git+https://github.com/huggingface/transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
torch
|
11 |
|
12 |
|
|
|
7 |
tesseract
|
8 |
clarifai_grpc
|
9 |
git+https://github.com/huggingface/transformers
|
10 |
+
|
11 |
+
sentencepiece
|
12 |
+
accelerate
|
13 |
+
bitsandbytes
|
14 |
+
einops
|
15 |
+
streamlit
|
16 |
+
|
17 |
torch
|
18 |
|
19 |
|