File size: 10,788 Bytes
de2fcea
b0e9ffc
 
 
e67784d
b0e9ffc
72728f6
b0e9ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cad844
89cfff9
 
 
 
 
 
 
b0e9ffc
 
 
 
 
4cad844
b0e9ffc
 
fbba69c
4cad844
 
 
efdef5e
4cad844
 
 
 
 
 
 
 
596a9ca
4cad844
 
 
 
 
b0e9ffc
 
4cad844
 
 
 
b0e9ffc
 
4cad844
b0e9ffc
4cad844
 
b0e9ffc
4cad844
 
 
b0e9ffc
4cad844
b0e9ffc
4cad844
 
 
 
b0e9ffc
4cad844
b0e9ffc
 
 
4cad844
 
b0e9ffc
 
4cad844
b0e9ffc
 
4cad844
 
 
b0e9ffc
4cad844
b0e9ffc
 
4cad844
 
b0e9ffc
4cad844
b0e9ffc
 
 
 
 
 
 
 
4cad844
b0e9ffc
 
 
 
 
 
 
4cad844
b0e9ffc
 
 
 
 
 
 
 
 
 
 
4cad844
 
b0e9ffc
 
 
 
 
 
 
 
 
e67784d
 
b0e9ffc
 
 
 
 
 
 
 
 
 
 
 
 
4cad844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e9ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89cfff9
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer


# GPT-4 credentials
PAT_GPT4 = "3ca5bd8b0f2244eb8d0e4b2838fc3cf1"
USER_ID_GPT4 = "openai"
APP_ID_GPT4 = "chat-completion"
MODEL_ID_GPT4 = "openai-gpt-4-vision"
MODEL_VERSION_ID_GPT4 = "266df29bc09843e0aee9b7bf723c03c2"

# DALL-E credentials
PAT_DALLE = "bfdeb4029ef54d23a2e608b0aa4c00e4"
USER_ID_DALLE = "openai"
APP_ID_DALLE = "dall-e"
MODEL_ID_DALLE = "dall-e-3"
MODEL_VERSION_ID_DALLE = "dc9dcb6ee67543cebc0b9a025861b868"

# TTS credentials
PAT_TTS = "bfdeb4029ef54d23a2e608b0aa4c00e4"
USER_ID_TTS = "openai"
APP_ID_TTS = "tts"
MODEL_ID_TTS = "openai-tts-1"
MODEL_VERSION_ID_TTS = "fff6ce1fd487457da95b79241ac6f02d"

# NewsGuardian model credentials
PAT_NEWSGUARDIAN = "your_news_guardian_pat"
USER_ID_NEWSGUARDIAN = "your_user_id"
APP_ID_NEWSGUARDIAN = "your_app_id"
MODEL_ID_NEWSGUARDIAN = "your_model_id"
MODEL_VERSION_ID_NEWSGUARDIAN = "your_model_version_id"

#
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2




# Set up gRPC channel for NewsGuardian model
channel_tts = ClarifaiChannel.get_grpc_channel()
stub_tts = service_pb2_grpc.V2Stub(channel_tts)
metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS,)

# Streamlit app
st.title("Fake-news-facts")


# Inserting logo
st.image("https://am.africanewschannel.org/wp-content/uploads/2021/08/000-Fake-News.jpg")
# Function to get gRPC channel for NewsGuardian model
def get_tts_channel():
    channel_tts = ClarifaiChannel.get_grpc_channel()
    return channel_tts, channel_tts.metadata



# User input
model_type = st.selectbox("Select Model", ["NewsGuardian model","NewsGuardian model"])
raw_text = st.text_area("This news is real or fake?")
image_upload = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])

# Button to generate result
if st.button("NewsGuardian News Result"):
    if model_type == "NewsGuardian model":
        # Set up gRPC channel for NewsGuardian model
        channel_gpt4 = ClarifaiChannel.get_grpc_channel()
        stub_gpt4 = service_pb2_grpc.V2Stub(channel_gpt4)
        metadata_gpt4 = (('authorization', 'Key ' + PAT_GPT4),)
        userDataObject_gpt4 = resources_pb2.UserAppIDSet(user_id=USER_ID_GPT4, app_id=APP_ID_GPT4)

        # Prepare the request for NewsGuardian model
        input_data_gpt4 = resources_pb2.Data()

        if raw_text:
            input_data_gpt4.text.raw = raw_text

        if image_upload is not None:
            image_bytes_gpt4 = image_upload.read()
            input_data_gpt4.image.base64 = image_bytes_gpt4

        post_model_outputs_response_gpt4 = stub_gpt4.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_gpt4,
                model_id=MODEL_ID_GPT4,
                version_id=MODEL_VERSION_ID_GPT4,
                inputs=[resources_pb2.Input(data=input_data_gpt4)]
            ),
            metadata=metadata_gpt4  # Use metadata directly in the gRPC request
        )

        # Check if the request was successful for NewsGuardian model
        if post_model_outputs_response_gpt4.status.code != status_code_pb2.SUCCESS:
            st.error(f"NewsGuardian model API request failed: {post_model_outputs_response_gpt4.status.description}")
        else:
            # Get the output for NewsGuardian model
            output_gpt4 = post_model_outputs_response_gpt4.outputs[0].data

            # Display the result for NewsGuardian model
            if output_gpt4.HasField("image"):
                st.image(output_gpt4.image.base64, caption='Generated Image (NewsGuardian model)', use_column_width=True)
            elif output_gpt4.HasField("text"):
                # Display the text result
                st.text(output_gpt4.text.raw)

                # Convert text to speech and play the audio
                stub_tts = service_pb2_grpc.V2Stub(channel_gpt4)  # Use the same channel for TTS

                tts_input_data = resources_pb2.Data()
                tts_input_data.text.raw = output_gpt4.text.raw

                tts_response = stub_tts.PostModelOutputs(
                    service_pb2.PostModelOutputsRequest(
                        user_app_id=userDataObject_tts,
                        model_id=MODEL_ID_TTS,
                        version_id=MODEL_VERSION_ID_TTS,
                        inputs=[resources_pb2.Input(data=tts_input_data)]
                    ),
                    metadata=metadata_gpt4  # Use the same metadata for TTS
                )

                # Check if the TTS request was successful
                if tts_response.status.code == status_code_pb2.SUCCESS:
                    tts_output = tts_response.outputs[0].data
                    st.audio(tts_output.audio.base64, format='audio/wav')
                else:
                    st.error(f"NewsGuardian model API request failed: {tts_response.status.description}")

    elif model_type == "DALL-E":
        # Set up gRPC channel for DALL-E
        channel_dalle = ClarifaiChannel.get_grpc_channel()
        stub_dalle = service_pb2_grpc.V2Stub(channel_dalle)
        metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),)
        userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE)

        # Prepare the request for DALL-E
        input_data_dalle = resources_pb2.Data()

        if raw_text:
            input_data_dalle.text.raw = raw_text

        post_model_outputs_response_dalle = stub_dalle.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_dalle,
                model_id=MODEL_ID_DALLE,
                version_id=MODEL_VERSION_ID_DALLE,
                inputs=[resources_pb2.Input(data=input_data_dalle)]
            ),
            metadata=metadata_dalle
        )

        # Check if the request was successful for DALL-E
        if post_model_outputs_response_dalle.status.code != status_code_pb2.SUCCESS:
            st.error(f"DALL-E API request failed: {post_model_outputs_response_dalle.status.description}")
        else:
            # Get the output for DALL-E
            output_dalle = post_model_outputs_response_dalle.outputs[0].data

            # Display the result for DALL-E
            if output_dalle.HasField("image"):
                st.image(output_dalle.image.base64, caption='Generated Image (DALL-E)', use_column_width=True)
            elif output_dalle.HasField("text"):
                st.text(output_dalle.text.raw)

    elif model_type == "NewsGuardian model":
        # Set up gRPC channel for NewsGuardian model
        channel_tts = ClarifaiChannel.get_grpc_channel()
        stub_tts = service_pb2_grpc.V2Stub(channel_tts)
        metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
        userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS)

        # Prepare the request for NewsGuardian model
        input_data_tts = resources_pb2.Data()

        if raw_text:
            input_data_tts.text.raw = raw_text

        post_model_outputs_response_tts = stub_tts.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_tts,
                model_id=MODEL_ID_TTS,
                version_id=MODEL_VERSION_ID_TTS,
                inputs=[resources_pb2.Input(data=input_data_tts)]
            ),
            metadata=metadata_tts
        )

        # Check if the request was successful for NewsGuardian model
        if post_model_outputs_response_tts.status.code != status_code_pb2.SUCCESS:
            st.error(f"NewsGuardian model API request failed: {post_model_outputs_response_tts.status.description}")
        else:
            # Get the output for NewsGuardian model
            output_tts = post_model_outputs_response_tts.outputs[0].data

            # Display the result for NewsGuardian model
            if output_tts.HasField("text"):
                st.text(output_tts.text.raw)

            if output_tts.HasField("audio"):
                st.audio(output_tts.audio.base64, format='audio/wav')


# Add the beautiful social media icon section
st.markdown("""
  <div align="center">
      <a href="https://github.com/pyresearch/pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226594737-c21e2dda-9cc6-42ef-b4e7-a685fea4a21d.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
        <a href="https://www.linkedin.com/company/pyresearch/" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226596446-746ffdd0-a47e-4452-84e3-bf11ec2aa26a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://twitter.com/Noorkhokhar10" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599162-9b11194e-4998-440a-ba94-c8a5e1cdc676.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />    
      <a href="https://www.youtube.com/@Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599904-7d5cc5c0-89d2-4d1e-891e-19bee1951744.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.facebook.com/Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226600380-a87a9142-e8e0-4ec9-bf2c-dd6e9da2f05a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.instagram.com/pyresearch/" style="text-decoration:none;">  
        <img src="https://user-images.githubusercontent.com/34125851/226601355-ffe0b597-9840-4e10-bbef-43d6c74b5a9e.png" width="2%" alt="" /></a>      
  </div>
  <hr>
""", unsafe_allow_html=True)