pyf98 commited on
Commit
ceb8584
·
1 Parent(s): 39da4d1

update layout

Browse files
Files changed (1) hide show
  1. app.py +8 -12
app.py CHANGED
@@ -6,13 +6,15 @@ from espnet2.bin.s2t_inference_language import Speech2Language
6
  from espnet2.bin.s2t_inference import Speech2Text
7
 
8
 
9
- TITLE="OWSM: Open Whisper-style Speech Model from CMU WAVLab"
10
 
11
  DESCRIPTION='''
12
  OWSM (pronounced as "awesome") is a series of Open Whisper-style Speech Models from [CMU WAVLab](https://www.wavlab.org/).
13
  We reproduce Whisper-style training using publicly available data and an open-source toolkit [ESPnet](https://github.com/espnet/espnet).
14
- For more details, please check our [website](https://www.wavlab.org/activities/2024/owsm/) or [paper](https://arxiv.org/abs/2309.13876) (Peng et al., ASRU 2023).
 
15
 
 
16
  The latest demo uses OWSM v3.1 based on [E-Branchformer](https://arxiv.org/abs/2210.00077).
17
  OWSM v3.1 has 1.02B parameters and is trained on 180k hours of labelled data. It supports various speech-to-text tasks:
18
  - Speech recognition in 151 languages
@@ -24,12 +26,9 @@ OWSM v3.1 has 1.02B parameters and is trained on 180k hours of labelled data. It
24
  As a demo, the input speech should not exceed 2 minutes. We also limit the maximum number of tokens to be generated.
25
  Please try our [Colab demo](https://colab.research.google.com/drive/1zKI3ZY_OtZd6YmVeED6Cxy1QwT1mqv9O?usp=sharing) if you want to explore more features.
26
 
27
- Disclaimer: OWSM has not been thoroughly evaluated in all tasks. Due to limited training data, it may not perform well for certain languages.
28
-
29
- Please consider citing the following related papers if you find our work helpful.
30
 
31
- <details><summary>citations</summary>
32
- <p>
33
 
34
  ```
35
  @inproceedings{peng2024owsm31,
@@ -45,10 +44,6 @@ Please consider citing the following related papers if you find our work helpful
45
  year={2023}
46
  }
47
  ```
48
-
49
- </p>
50
- </details>
51
-
52
  '''
53
 
54
  if not torch.cuda.is_available():
@@ -168,6 +163,7 @@ demo = gr.Interface(
168
  ],
169
  title=TITLE,
170
  description=DESCRIPTION,
 
171
  allow_flagging="never",
172
  )
173
 
@@ -176,5 +172,5 @@ if __name__ == "__main__":
176
  demo.launch(
177
  show_api=False,
178
  share=True,
179
- ssr_mode=False,
180
  )
 
6
  from espnet2.bin.s2t_inference import Speech2Text
7
 
8
 
9
+ TITLE="Open Whisper-style Speech Model from CMU WAVLab"
10
 
11
  DESCRIPTION='''
12
  OWSM (pronounced as "awesome") is a series of Open Whisper-style Speech Models from [CMU WAVLab](https://www.wavlab.org/).
13
  We reproduce Whisper-style training using publicly available data and an open-source toolkit [ESPnet](https://github.com/espnet/espnet).
14
+ For more details, please check our [website](https://www.wavlab.org/activities/2024/owsm/).
15
+ '''
16
 
17
+ ARTICLE = '''
18
  The latest demo uses OWSM v3.1 based on [E-Branchformer](https://arxiv.org/abs/2210.00077).
19
  OWSM v3.1 has 1.02B parameters and is trained on 180k hours of labelled data. It supports various speech-to-text tasks:
20
  - Speech recognition in 151 languages
 
26
  As a demo, the input speech should not exceed 2 minutes. We also limit the maximum number of tokens to be generated.
27
  Please try our [Colab demo](https://colab.research.google.com/drive/1zKI3ZY_OtZd6YmVeED6Cxy1QwT1mqv9O?usp=sharing) if you want to explore more features.
28
 
29
+ **Disclaimer:** OWSM has not been thoroughly evaluated in all tasks. Due to limited training data, it may not perform well for certain languages.
 
 
30
 
31
+ Please consider citing the following papers if you find our work helpful.
 
32
 
33
  ```
34
  @inproceedings{peng2024owsm31,
 
44
  year={2023}
45
  }
46
  ```
 
 
 
 
47
  '''
48
 
49
  if not torch.cuda.is_available():
 
163
  ],
164
  title=TITLE,
165
  description=DESCRIPTION,
166
+ article=ARTICLE,
167
  allow_flagging="never",
168
  )
169
 
 
172
  demo.launch(
173
  show_api=False,
174
  share=True,
175
+ ssr_mode=True,
176
  )