quiz_generator / app.py
pydeoxy's picture
Update app.py
15a9593 verified
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain
from langchain_community.llms import LlamaCpp
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
filename="Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
local_dir = "./models"
)
llm = LlamaCpp(
model_path="models/Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf",
)
# Generator function
def gen_quiz(text_input,num):
prompt = ChatPromptTemplate.from_template(
"Generate {num} questions and their correct answers based on the following text:\n\n{text}\n\n"
)
# Prepare the inputs for the chain
prompt_input = {"text": text_input, "num": num}
chain = LLMChain(llm=llm, prompt=prompt)
quiz = chain(prompt_input)
return quiz['text']
# Example
text_example = "In general, IFC, or “Industry Foundation Classes”, \
is a standardized, digital description of the built environment, \
including buildings and civil infrastructure. \
It is an open, international standard (ISO 16739-1:2018), \
meant to be vendor-neutral, or agnostic, and usable across a wide range of hardware devices, \
software platforms, and interfaces for many different use cases. \
The IFC schema specification is the primary technical deliverable of buildingSMART International to fulfill its goal to promote openBIM."
import gradio as gr
# Gradio Interface
gr.close_all()
demo = gr.Interface(fn=gen_quiz,
inputs=[gr.Textbox(label="Text to generate quiz from", lines=6),
gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of Quiz")],
outputs=[gr.Textbox(label="Result", lines=10)],
examples=[[text_example, 3]],
title="Quiz Generator with LlamaCpp",
description="Generating quiz based on given texts using Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf!"
)
demo.launch()