{ "cells": [ { "cell_type": "code", "execution_count": 4, "id": "c168f24a", "metadata": {}, "outputs": [], "source": [ "!pip install -Uqq fastai duckduckgo_search pandas" ] }, { "cell_type": "code", "execution_count": 5, "id": "c84aa916", "metadata": {}, "outputs": [], "source": [ "from duckduckgo_search import ddg_images\n", "from fastcore.all import *\n", "from time import sleep\n", "import pandas as pd\n", "from io import StringIO\n", "\n", "\n", "def search_images(term, max_images=50):\n", " print(f\"Searching for '{term}'\")\n", " return L(ddg_images(term, max_results=max_images)).itemgot('image')" ] }, { "cell_type": "code", "execution_count": null, "id": "fef32513", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('')" ] }, { "cell_type": "code", "execution_count": null, "id": "a17948bf", "metadata": {}, "outputs": [], "source": [ "searches = 'basketball ball','rugby ball', 'soccer ball', 'golf ball'\n", "path = Path('model_pics')" ] }, { "cell_type": "code", "execution_count": null, "id": "a78f7280", "metadata": {}, "outputs": [], "source": [ "\n", "\n", "\n", "for o in searches:\n", " dest = (path/o)\n", " dest.mkdir(exist_ok=True, parents=True)\n", " download_images(dest, urls=search_images(f'{o} photo'))\n", " sleep(10) # Pause between searches to avoid over-loading server" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 5 }