Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,243 Bytes
a45988a 84a590f a45988a 84a590f a45988a a8c3d40 a45988a 32204e3 a45988a ce6c94f a45988a 4fd1f96 a45988a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import functools
import os
import sys
import tempfile
import av
import numpy as np
import spaces
import gradio as gr
import torch as torch
import einops
from huggingface_hub import login
from colorize import colorize_depth_multi_thread
from video_io import get_video_fps, write_video_from_numpy
VERBOSE = False
MAX_FRAMES = 100
def process(pipe, device, path_input):
print(f"Processing {path_input}")
path_output_dir = tempfile.mkdtemp()
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_in = os.path.join(path_output_dir, f"{name_base}_depth_input.mp4")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
output_fps = int(get_video_fps(path_input))
container = av.open(path_input)
stream = container.streams.video[0]
fps = float(stream.average_rate)
duration_sec = float(stream.duration * stream.time_base) if stream.duration else 0
total_frames = int(duration_sec * fps)
if total_frames > MAX_FRAMES:
gr.Warning(
f"Only the first {MAX_FRAMES} frames (~{MAX_FRAMES / fps:.1f} sec.) will be processed for demonstration; "
f"use the code from GitHub for full processing"
)
generator = torch.Generator(device=device)
generator.manual_seed(2024)
pipe_out: RollingDepthOutput = pipe(
# input setting
input_video_path=path_input,
start_frame=0,
frame_count=min(MAX_FRAMES, total_frames), # 0 = all
processing_res=768,
# infer setting
dilations=[1, 25],
cap_dilation=True,
snippet_lengths=[3],
init_infer_steps=[1],
strides=[1],
coalign_kwargs=None,
refine_step=0, # 0 = off
max_vae_bs=8, # batch size for encoder/decoder
# other settings
generator=generator,
verbose=VERBOSE,
# output settings
restore_res=False,
unload_snippet=False,
)
depth_pred = pipe_out.depth_pred # [N 1 H W]
# Colorize results
cmap = "Spectral_r"
colored_np = colorize_depth_multi_thread(
depth=depth_pred.numpy(),
valid_mask=None,
chunk_size=4,
num_threads=4,
color_map=cmap,
verbose=VERBOSE,
) # [n h w 3], in [0, 255]
write_video_from_numpy(
frames=colored_np,
output_path=path_out_vis,
fps=output_fps,
crf=23,
preset="medium",
verbose=VERBOSE,
)
# Save rgb
rgb = (pipe_out.input_rgb.numpy() * 255).astype(np.uint8) # [N 3 H W]
rgb = einops.rearrange(rgb, "n c h w -> n h w c")
write_video_from_numpy(
frames=rgb,
output_path=path_out_in,
fps=output_fps,
crf=23,
preset="medium",
verbose=VERBOSE,
)
return path_out_in, path_out_vis
def run_demo_server(pipe, device):
process_pipe = spaces.GPU(functools.partial(process, pipe, device), duration=120)
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
with gr.Blocks(
analytics_enabled=False,
title="RollingDepth",
css="""
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
""",
) as demo:
gr.HTML(
"""
<h1>๐น RollingDepth ๐น: Video Depth without Video Models</h1>
<div style="text-align: center; margin-top: 20px;">
<a title="Website" href="https://rollingdepth.github.io" target="_blank" rel="noopener noreferrer" style="display: inline-block; margin-right: 4px;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg" alt="Website Badge">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2411.19189" target="_blank" rel="noopener noreferrer" style="display: inline-block; margin-right: 4px;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg" alt="arXiv Badge">
</a>
<a title="GitHub" href="https://github.com/prs-eth/rollingdepth" target="_blank" rel="noopener noreferrer" style="display: inline-block; margin-right: 4px;">
<img src="https://img.shields.io/github/stars/prs-eth/rollingdepth?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="GitHub Stars Badge">
</a>
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block; margin-right: 4px;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</div>
<p style="margin-top: 20px; text-align: justify;">
RollingDepth is the state-of-the-art depth estimator for videos in the wild. Upload your video into the
<b>left</b> pane, or click any of the <b>examples</b> below. The result preview will be computed and
appear in the <b>right</b> panes. For full functionality, use the code on GitHub.
<b>TIP:</b> When running out of GPU time, fork the demo.
</p>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_video = gr.Video(label="Input Video")
with gr.Column(scale=2):
with gr.Row(equal_height=True):
output_video_1 = gr.Video(
label="Preprocessed video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
output_video_2 = gr.Video(
label="Generated Depth Video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row(equal_height=False):
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=[
["files/gokart.mp4"],
["files/horse.mp4"],
["files/walking.mp4"],
],
inputs=[input_video],
outputs=[output_video_1, output_video_2],
fn=process_pipe,
cache_examples=True,
cache_mode="eager",
)
generate_btn.click(
fn=process_pipe,
inputs=[input_video],
outputs=[output_video_1, output_video_2],
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def main():
os.system("pip freeze")
os.system("pip uninstall -y diffusers")
os.system("pip install rollingdepth_src/diffusers")
os.system("pip freeze")
if "HF_TOKEN_LOGIN" in os.environ:
login(token=os.environ["HF_TOKEN_LOGIN"])
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
sys.path.append(os.path.join(os.path.dirname(__file__), "rollingdepth_src"))
from rollingdepth import RollingDepthOutput, RollingDepthPipeline
pipe: RollingDepthPipeline = RollingDepthPipeline.from_pretrained(
"prs-eth/rollingdepth-v1-0",
torch_dtype=torch.float16,
)
pipe.set_progress_bar_config(disable=True)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
run_demo_server(pipe, device)
if __name__ == "__main__":
main()
|