File size: 9,243 Bytes
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a590f
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a590f
a45988a
 
 
 
a8c3d40
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
32204e3
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce6c94f
a45988a
 
 
 
 
 
 
 
 
4fd1f96
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------

import functools
import os
import sys
import tempfile

import av
import numpy as np

import spaces
import gradio as gr
import torch as torch
import einops

from huggingface_hub import login

from colorize import colorize_depth_multi_thread
from video_io import get_video_fps, write_video_from_numpy

VERBOSE = False
MAX_FRAMES = 100


def process(pipe, device, path_input):
    print(f"Processing {path_input}")

    path_output_dir = tempfile.mkdtemp()
    os.makedirs(path_output_dir, exist_ok=True)

    name_base = os.path.splitext(os.path.basename(path_input))[0]
    path_out_in = os.path.join(path_output_dir, f"{name_base}_depth_input.mp4")
    path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")

    output_fps = int(get_video_fps(path_input))

    container = av.open(path_input)
    stream = container.streams.video[0]
    fps = float(stream.average_rate)
    duration_sec = float(stream.duration * stream.time_base) if stream.duration else 0
    total_frames = int(duration_sec * fps)
    if total_frames > MAX_FRAMES:
        gr.Warning(
            f"Only the first {MAX_FRAMES} frames (~{MAX_FRAMES / fps:.1f} sec.) will be processed for demonstration; "
            f"use the code from GitHub for full processing"
        )

    generator = torch.Generator(device=device)
    generator.manual_seed(2024)

    pipe_out: RollingDepthOutput = pipe(
        # input setting
        input_video_path=path_input,
        start_frame=0,
        frame_count=min(MAX_FRAMES, total_frames),  # 0 = all
        processing_res=768,
        # infer setting
        dilations=[1, 25],
        cap_dilation=True,
        snippet_lengths=[3],
        init_infer_steps=[1],
        strides=[1],
        coalign_kwargs=None,
        refine_step=0,  # 0 = off
        max_vae_bs=8,  # batch size for encoder/decoder
        # other settings
        generator=generator,
        verbose=VERBOSE,
        # output settings
        restore_res=False,
        unload_snippet=False,
    )

    depth_pred = pipe_out.depth_pred  # [N 1 H W]

    # Colorize results
    cmap = "Spectral_r"
    colored_np = colorize_depth_multi_thread(
        depth=depth_pred.numpy(),
        valid_mask=None,
        chunk_size=4,
        num_threads=4,
        color_map=cmap,
        verbose=VERBOSE,
    )  # [n h w 3], in [0, 255]

    write_video_from_numpy(
        frames=colored_np,
        output_path=path_out_vis,
        fps=output_fps,
        crf=23,
        preset="medium",
        verbose=VERBOSE,
    )

    # Save rgb
    rgb = (pipe_out.input_rgb.numpy() * 255).astype(np.uint8)  # [N 3 H W]
    rgb = einops.rearrange(rgb, "n c h w -> n h w c")
    write_video_from_numpy(
        frames=rgb,
        output_path=path_out_in,
        fps=output_fps,
        crf=23,
        preset="medium",
        verbose=VERBOSE,
    )

    return path_out_in, path_out_vis


def run_demo_server(pipe, device):
    process_pipe = spaces.GPU(functools.partial(process, pipe, device), duration=120)
    os.environ["GRADIO_ALLOW_FLAGGING"] = "never"

    with gr.Blocks(
        analytics_enabled=False,
        title="RollingDepth",
        css="""
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
        """,
    ) as demo:
        gr.HTML(
            """
            <h1>๐Ÿ›น RollingDepth ๐Ÿ›น: Video Depth without Video Models</h1>
            <div style="text-align: center; margin-top: 20px;">
                <a title="Website" href="https://rollingdepth.github.io" target="_blank" rel="noopener noreferrer" style="display: inline-block; margin-right: 4px;">
                    <img src="https://www.obukhov.ai/img/badges/badge-website.svg" alt="Website Badge">
                </a>
                <a title="arXiv" href="https://arxiv.org/abs/2411.19189" target="_blank" rel="noopener noreferrer" style="display: inline-block; margin-right: 4px;">
                    <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg" alt="arXiv Badge">
                </a>
                <a title="GitHub" href="https://github.com/prs-eth/rollingdepth" target="_blank" rel="noopener noreferrer" style="display: inline-block; margin-right: 4px;">
                    <img src="https://img.shields.io/github/stars/prs-eth/rollingdepth?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="GitHub Stars Badge">
                </a>
                <a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block; margin-right: 4px;">
                    <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
                </a>
            </div>
            <p style="margin-top: 20px; text-align: justify;">
                RollingDepth is the state-of-the-art depth estimator for videos in the wild. Upload your video into the 
                <b>left</b> pane, or click any of the <b>examples</b> below. The result preview will be computed and 
                appear in the <b>right</b> panes. For full functionality, use the code on GitHub. 
                <b>TIP:</b> When running out of GPU time, fork the demo.
            </p>
            """
        )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_video = gr.Video(label="Input Video")
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    output_video_1 = gr.Video(
                        label="Preprocessed video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )
                    output_video_2 = gr.Video(
                        label="Generated Depth Video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Row(equal_height=False):
                    generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass

        gr.Examples(
            examples=[
                ["files/gokart.mp4"],
                ["files/horse.mp4"],
                ["files/walking.mp4"],
            ],
            inputs=[input_video],
            outputs=[output_video_1, output_video_2],
            fn=process_pipe,
            cache_examples=True,
            cache_mode="eager",
        )

        generate_btn.click(
            fn=process_pipe,
            inputs=[input_video],
            outputs=[output_video_1, output_video_2],
        )

        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
        )


def main():
    os.system("pip freeze")
    os.system("pip uninstall -y diffusers")
    os.system("pip install rollingdepth_src/diffusers")
    os.system("pip freeze")

    if "HF_TOKEN_LOGIN" in os.environ:
        login(token=os.environ["HF_TOKEN_LOGIN"])

    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")

    sys.path.append(os.path.join(os.path.dirname(__file__), "rollingdepth_src"))
    from rollingdepth import RollingDepthOutput, RollingDepthPipeline

    pipe: RollingDepthPipeline = RollingDepthPipeline.from_pretrained(
        "prs-eth/rollingdepth-v1-0",
        torch_dtype=torch.float16,
    )
    pipe.set_progress_bar_config(disable=True)

    try:
        import xformers

        pipe.enable_xformers_memory_efficient_attention()
    except:
        pass  # run without xformers

    pipe = pipe.to(device)

    run_demo_server(pipe, device)


if __name__ == "__main__":
    main()