from scipy.io import loadmat from PIL import Image import numpy as np import os import cv2 def cal_new_size_v2(im_h, im_w, min_size, max_size): rate = 1.0 * max_size / im_h rate_w = im_w * rate if rate_w > max_size: rate = 1.0 * max_size / im_w tmp_h = int(1.0 * im_h * rate / 16) * 16 if tmp_h < min_size: rate = 1.0 * min_size / im_h tmp_w = int(1.0 * im_w * rate / 16) * 16 if tmp_w < min_size: rate = 1.0 * min_size / im_w tmp_h = min(max(int(1.0 * im_h * rate / 16) * 16, min_size), max_size) tmp_w = min(max(int(1.0 * im_w * rate / 16) * 16, min_size), max_size) rate_h = 1.0 * tmp_h / im_h rate_w = 1.0 * tmp_w / im_w assert tmp_h >= min_size and tmp_h <= max_size assert tmp_w >= min_size and tmp_w <= max_size return tmp_h, tmp_w, rate_h, rate_w def gen_density_map_gaussian(im_height, im_width, points, sigma=4): """ func: generate the density map. points: [num_gt, 2], for each row: [width, height] """ density_map = np.zeros([im_height, im_width], dtype=np.float32) h, w = density_map.shape[:2] num_gt = np.squeeze(points).shape[0] if num_gt == 0: return density_map for p in points: p = np.round(p).astype(int) p[0], p[1] = min(h - 1, p[1]), min(w - 1, p[0]) gaussian_radius = sigma * 2 - 1 gaussian_map = np.multiply( cv2.getGaussianKernel(int(gaussian_radius * 2 + 1), sigma), cv2.getGaussianKernel(int(gaussian_radius * 2 + 1), sigma).T ) x_left, x_right, y_up, y_down = 0, gaussian_map.shape[1], 0, gaussian_map.shape[0] # cut the gaussian kernel if p[1] < gaussian_radius: x_left = gaussian_radius - p[1] if p[0] < gaussian_radius: y_up = gaussian_radius - p[0] if p[1] + gaussian_radius >= w: x_right = gaussian_map.shape[1] - (gaussian_radius + p[1] - w) - 1 if p[0] + gaussian_radius >= h: y_down = gaussian_map.shape[0] - (gaussian_radius + p[0] - h) - 1 gaussian_map = gaussian_map[y_up:y_down, x_left:x_right] if np.sum(gaussian_map): gaussian_map = gaussian_map / np.sum(gaussian_map) density_map[ max(0, p[0] - gaussian_radius):min(h, p[0] + gaussian_radius + 1), max(0, p[1] - gaussian_radius):min(w, p[1] + gaussian_radius + 1) ] += gaussian_map density_map = density_map / (np.sum(density_map / num_gt)) return density_map def generate_data(im_path, mat_path, min_size, max_size): im = Image.open(im_path).convert('RGB') im_w, im_h = im.size points = loadmat(mat_path)['annPoints'].astype(np.float32) if len(points) > 0: # some image has no crowd idx_mask = (points[:, 0] >= 0) * (points[:, 0] <= im_w) * (points[:, 1] >= 0) * (points[:, 1] <= im_h) points = points[idx_mask] im_h, im_w, rr_h, rr_w = cal_new_size_v2(im_h, im_w, min_size, max_size) im = np.array(im) if rr_h != 1.0 or rr_w != 1.0: im = cv2.resize(np.array(im), (im_w, im_h), cv2.INTER_CUBIC) if len(points) > 0: # some image has no crowd points[:, 0] = points[:, 0] * rr_w points[:, 1] = points[:, 1] * rr_h density_map = gen_density_map_gaussian(im_h, im_w, points, sigma=8) return Image.fromarray(im), points, density_map def generate_image(im_path, min_size, max_size): im = Image.open(im_path).convert('RGB') im_w, im_h = im.size im_h, im_w, rr_h, rr_w = cal_new_size_v2(im_h, im_w, min_size, max_size) im = np.array(im) if rr_h != 1.0 or rr_w != 1.0: im = cv2.resize(np.array(im), (im_w, im_h), cv2.INTER_CUBIC) return Image.fromarray(im) def main(input_dataset_path, output_dataset_path, min_size=384, max_size=1920): ori_img_path = os.path.join(input_dataset_path, 'images') ori_anno_path = os.path.join(input_dataset_path, 'mats') for phase in ['train', 'val']: sub_save_dir = os.path.join(output_dataset_path, phase) if not os.path.exists(sub_save_dir): os.makedirs(sub_save_dir) with open(os.path.join(input_dataset_path, '{}.txt'.format(phase))) as f: lines = f.readlines() for i in lines: i = i.strip().split(' ')[0] im_path = os.path.join(ori_img_path, i + '.jpg') mat_path = os.path.join(ori_anno_path, i + '.mat') name = os.path.basename(im_path) im_save_path = os.path.join(sub_save_dir, name) print(name) # The Gaussian smoothed density map is just for visualization. It's not used in training. im, points, density_map = generate_data(im_path, mat_path, min_size, max_size) im.save(im_save_path) gd_save_path = im_save_path.replace('jpg', 'npy') np.save(gd_save_path, points) dm_save_path = im_save_path.replace('.jpg', '_densitymap.npy') np.save(dm_save_path, density_map) for phase in ['test']: sub_save_dir = os.path.join(output_dataset_path, phase) if not os.path.exists(sub_save_dir): os.makedirs(sub_save_dir) with open(os.path.join(input_dataset_path, '{}.txt'.format(phase))) as f: lines = f.readlines() for i in lines: i = i.strip().split(' ')[0] im_path = os.path.join(ori_img_path, i + '.jpg') name = os.path.basename(im_path) im_save_path = os.path.join(sub_save_dir, name) print(name) im = generate_image(im_path, min_size, max_size) im.save(im_save_path)