import torch.nn as nn import torch.utils.model_zoo as model_zoo from torch.nn import functional as F __all__ = ['vgg19'] model_urls = { 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', } class VGG(nn.Module): def __init__(self, features): super(VGG, self).__init__() self.features = features self.reg_layer = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), ) self.density_layer = nn.Sequential(nn.Conv2d(128, 1, 1), nn.ReLU()) def forward(self, x): x = self.features(x) x = F.upsample_bilinear(x, scale_factor=2) x = self.reg_layer(x) mu = self.density_layer(x) B, C, H, W = mu.size() mu_sum = mu.view([B, -1]).sum(1).unsqueeze(1).unsqueeze(2).unsqueeze(3) mu_normed = mu / (mu_sum + 1e-6) return mu, mu_normed def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfg = { 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512] } def vgg19(): """VGG 19-layer model (configuration "E") model pre-trained on ImageNet """ model = VGG(make_layers(cfg['E'])) model.load_state_dict(model_zoo.load_url(model_urls['vgg19']), strict=False) return model