promptsai commited on
Commit
230ee18
·
verified ·
1 Parent(s): 2bd24e9

Delete demo.py

Browse files
Files changed (1) hide show
  1. demo.py +0 -54
demo.py DELETED
@@ -1,54 +0,0 @@
1
- import torch
2
- from models import vgg19
3
- import gdown
4
- from PIL import Image
5
- from torchvision import transforms
6
- import gradio as gr
7
- import cv2
8
- import numpy as np
9
- import scipy
10
-
11
- model_path = "pretrained_models/model_qnrf.pth"
12
- url = "https://drive.google.com/uc?id=1nnIHPaV9RGqK8JHL645zmRvkNrahD9ru"
13
- gdown.download(url, model_path, quiet=False)
14
-
15
- device = torch.device('cpu') # device can be "cpu" or "gpu"
16
-
17
- model = vgg19()
18
- model.to(device)
19
- model.load_state_dict(torch.load(model_path, device))
20
- model.eval()
21
-
22
-
23
- def predict(inp):
24
- inp = Image.fromarray(inp.astype('uint8'), 'RGB')
25
- inp = transforms.ToTensor()(inp).unsqueeze(0)
26
- inp = inp.to(device)
27
- with torch.set_grad_enabled(False):
28
- outputs, _ = model(inp)
29
- count = torch.sum(outputs).item()
30
- vis_img = outputs[0, 0].cpu().numpy()
31
- # normalize density map values from 0 to 1, then map it to 0-255.
32
- vis_img = (vis_img - vis_img.min()) / (vis_img.max() - vis_img.min() + 1e-5)
33
- vis_img = (vis_img * 255).astype(np.uint8)
34
- vis_img = cv2.applyColorMap(vis_img, cv2.COLORMAP_JET)
35
- vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
36
- return vis_img, int(count)
37
-
38
-
39
- inputs = gr.Image(label="Image of Crowd")
40
- outputs = [
41
- gr.Image(label="Predicted Density Map"),
42
- gr.Label(label="Predicted Count")
43
- ]
44
-
45
- # Assuming `title`, `desc`, and `examples` variables are defined elsewhere in your code.
46
- title = "Your App Title"
47
- desc = "Your App Description"
48
-
49
- gr.Interface(fn=predict,
50
- inputs=inputs,
51
- outputs=outputs,
52
- title=title,
53
- description=desc,
54
- allow_flagging="never").launch(share=True)