Spaces:
Runtime error
Runtime error
import torch | |
from models import vgg19 | |
import gdown | |
from PIL import Image | |
from torchvision import transforms | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import scipy | |
import base64 | |
model_path = "pretrained_models/model_qnrf.pth" | |
url = "https://drive.google.com/uc?id=1nnIHPaV9RGqK8JHL645zmRvkNrahD9ru" | |
gdown.download(url, model_path, quiet=False) | |
device = torch.device('cpu') # device can be "cpu" or "gpu" | |
model = vgg19() | |
model.to(device) | |
model.load_state_dict(torch.load(model_path, device)) | |
model.eval() | |
def image_to_base64(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def predict(inp): | |
inp = Image.fromarray(inp.astype('uint8'), 'RGB') | |
inp = transforms.ToTensor()(inp).unsqueeze(0) | |
inp = inp.to(device) | |
with torch.set_grad_enabled(False): | |
outputs, _ = model(inp) | |
count = torch.sum(outputs).item() | |
vis_img = outputs[0, 0].cpu().numpy() | |
# normalize density map values from 0 to 1, then map it to 0-255. | |
vis_img = (vis_img - vis_img.min()) / (vis_img.max() - vis_img.min() + 1e-5) | |
vis_img = (vis_img * 255).astype(np.uint8) | |
vis_img = cv2.applyColorMap(vis_img, cv2.COLORMAP_JET) | |
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB) | |
return vis_img, int(count) | |
inputs = gr.Image(label="Image of Crowd") | |
outputs = [ | |
gr.Image(label="Predicted Density Map"), | |
gr.Label(label="Predicted Count") | |
] | |
# Convert your image to Base64 | |
logo_base64 = image_to_base64("corporate.png") | |
logo_src = f"data:image/png;base64,{logo_base64}" | |
desc = f""" | |
<style> | |
/* Add padding at the bottom of the interface to prevent overlap with the absolutely positioned image */ | |
body, html, .interface {{ | |
margin: 0; | |
padding-bottom: 120px; /* Adjust this value based on the height of your image */ | |
}} | |
/* Position your image at the bottom left of the interface */ | |
.logo-img {{ | |
width: 150px; /* Set width to auto to keep the original image size */ | |
bottom: 10px; | |
left: 10px; | |
}} | |
/* Style for your text to make sure it does not overlap the logo */ | |
.with-margin {{ | |
padding-left: 120px; /* This padding should be more than the width of your logo to prevent text overlap */ | |
}} | |
</style> | |
<div class="description"> | |
<img src="{logo_src}" alt='Logo' class="logo-img" width="300px"/> | |
<h4 class="with-margin">AI-Powered Audience Insights</h4> | |
<p class="with-margin">Seamlessly count and analyze your conference attendees with cutting-edge neural language models</p> | |
</div> | |
""" | |
gr.Interface(fn=predict, | |
inputs=inputs, | |
outputs=outputs, | |
title=" ", | |
description=desc, | |
allow_flagging="never", | |
css="footer{display:none !important}").launch() |