Spaces:
Runtime error
Runtime error
from scipy.io import loadmat | |
from PIL import Image | |
import numpy as np | |
import os | |
import cv2 | |
def cal_new_size_v2(im_h, im_w, min_size, max_size): | |
rate = 1.0 * max_size / im_h | |
rate_w = im_w * rate | |
if rate_w > max_size: | |
rate = 1.0 * max_size / im_w | |
tmp_h = int(1.0 * im_h * rate / 16) * 16 | |
if tmp_h < min_size: | |
rate = 1.0 * min_size / im_h | |
tmp_w = int(1.0 * im_w * rate / 16) * 16 | |
if tmp_w < min_size: | |
rate = 1.0 * min_size / im_w | |
tmp_h = min(max(int(1.0 * im_h * rate / 16) * 16, min_size), max_size) | |
tmp_w = min(max(int(1.0 * im_w * rate / 16) * 16, min_size), max_size) | |
rate_h = 1.0 * tmp_h / im_h | |
rate_w = 1.0 * tmp_w / im_w | |
assert tmp_h >= min_size and tmp_h <= max_size | |
assert tmp_w >= min_size and tmp_w <= max_size | |
return tmp_h, tmp_w, rate_h, rate_w | |
def gen_density_map_gaussian(im_height, im_width, points, sigma=4): | |
""" | |
func: generate the density map. | |
points: [num_gt, 2], for each row: [width, height] | |
""" | |
density_map = np.zeros([im_height, im_width], dtype=np.float32) | |
h, w = density_map.shape[:2] | |
num_gt = np.squeeze(points).shape[0] | |
if num_gt == 0: | |
return density_map | |
for p in points: | |
p = np.round(p).astype(int) | |
p[0], p[1] = min(h - 1, p[1]), min(w - 1, p[0]) | |
gaussian_radius = sigma * 2 - 1 | |
gaussian_map = np.multiply( | |
cv2.getGaussianKernel(int(gaussian_radius * 2 + 1), sigma), | |
cv2.getGaussianKernel(int(gaussian_radius * 2 + 1), sigma).T | |
) | |
x_left, x_right, y_up, y_down = 0, gaussian_map.shape[1], 0, gaussian_map.shape[0] | |
# cut the gaussian kernel | |
if p[1] < gaussian_radius: | |
x_left = gaussian_radius - p[1] | |
if p[0] < gaussian_radius: | |
y_up = gaussian_radius - p[0] | |
if p[1] + gaussian_radius >= w: | |
x_right = gaussian_map.shape[1] - (gaussian_radius + p[1] - w) - 1 | |
if p[0] + gaussian_radius >= h: | |
y_down = gaussian_map.shape[0] - (gaussian_radius + p[0] - h) - 1 | |
gaussian_map = gaussian_map[y_up:y_down, x_left:x_right] | |
if np.sum(gaussian_map): | |
gaussian_map = gaussian_map / np.sum(gaussian_map) | |
density_map[ | |
max(0, p[0] - gaussian_radius):min(h, p[0] + gaussian_radius + 1), | |
max(0, p[1] - gaussian_radius):min(w, p[1] + gaussian_radius + 1) | |
] += gaussian_map | |
density_map = density_map / (np.sum(density_map / num_gt)) | |
return density_map | |
def generate_data(im_path, mat_path, min_size, max_size): | |
im = Image.open(im_path).convert('RGB') | |
im_w, im_h = im.size | |
points = loadmat(mat_path)['annPoints'].astype(np.float32) | |
if len(points) > 0: # some image has no crowd | |
idx_mask = (points[:, 0] >= 0) * (points[:, 0] <= im_w) * (points[:, 1] >= 0) * (points[:, 1] <= im_h) | |
points = points[idx_mask] | |
im_h, im_w, rr_h, rr_w = cal_new_size_v2(im_h, im_w, min_size, max_size) | |
im = np.array(im) | |
if rr_h != 1.0 or rr_w != 1.0: | |
im = cv2.resize(np.array(im), (im_w, im_h), cv2.INTER_CUBIC) | |
if len(points) > 0: # some image has no crowd | |
points[:, 0] = points[:, 0] * rr_w | |
points[:, 1] = points[:, 1] * rr_h | |
density_map = gen_density_map_gaussian(im_h, im_w, points, sigma=8) | |
return Image.fromarray(im), points, density_map | |
def generate_image(im_path, min_size, max_size): | |
im = Image.open(im_path).convert('RGB') | |
im_w, im_h = im.size | |
im_h, im_w, rr_h, rr_w = cal_new_size_v2(im_h, im_w, min_size, max_size) | |
im = np.array(im) | |
if rr_h != 1.0 or rr_w != 1.0: | |
im = cv2.resize(np.array(im), (im_w, im_h), cv2.INTER_CUBIC) | |
return Image.fromarray(im) | |
def main(input_dataset_path, output_dataset_path, min_size=384, max_size=1920): | |
ori_img_path = os.path.join(input_dataset_path, 'images') | |
ori_anno_path = os.path.join(input_dataset_path, 'mats') | |
for phase in ['train', 'val']: | |
sub_save_dir = os.path.join(output_dataset_path, phase) | |
if not os.path.exists(sub_save_dir): | |
os.makedirs(sub_save_dir) | |
with open(os.path.join(input_dataset_path, '{}.txt'.format(phase))) as f: | |
lines = f.readlines() | |
for i in lines: | |
i = i.strip().split(' ')[0] | |
im_path = os.path.join(ori_img_path, i + '.jpg') | |
mat_path = os.path.join(ori_anno_path, i + '.mat') | |
name = os.path.basename(im_path) | |
im_save_path = os.path.join(sub_save_dir, name) | |
print(name) | |
# The Gaussian smoothed density map is just for visualization. It's not used in training. | |
im, points, density_map = generate_data(im_path, mat_path, min_size, max_size) | |
im.save(im_save_path) | |
gd_save_path = im_save_path.replace('jpg', 'npy') | |
np.save(gd_save_path, points) | |
dm_save_path = im_save_path.replace('.jpg', '_densitymap.npy') | |
np.save(dm_save_path, density_map) | |
for phase in ['test']: | |
sub_save_dir = os.path.join(output_dataset_path, phase) | |
if not os.path.exists(sub_save_dir): | |
os.makedirs(sub_save_dir) | |
with open(os.path.join(input_dataset_path, '{}.txt'.format(phase))) as f: | |
lines = f.readlines() | |
for i in lines: | |
i = i.strip().split(' ')[0] | |
im_path = os.path.join(ori_img_path, i + '.jpg') | |
name = os.path.basename(im_path) | |
im_save_path = os.path.join(sub_save_dir, name) | |
print(name) | |
im = generate_image(im_path, min_size, max_size) | |
im.save(im_save_path) | |