Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
import torch.utils.model_zoo as model_zoo | |
from torch.nn import functional as F | |
__all__ = ['vgg19'] | |
model_urls = { | |
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', | |
} | |
class VGG(nn.Module): | |
def __init__(self, features): | |
super(VGG, self).__init__() | |
self.features = features | |
self.reg_layer = nn.Sequential( | |
nn.Conv2d(512, 256, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 128, kernel_size=3, padding=1), | |
nn.ReLU(inplace=True), | |
) | |
self.density_layer = nn.Sequential(nn.Conv2d(128, 1, 1), nn.ReLU()) | |
def forward(self, x): | |
x = self.features(x) | |
x = F.upsample_bilinear(x, scale_factor=2) | |
x = self.reg_layer(x) | |
mu = self.density_layer(x) | |
B, C, H, W = mu.size() | |
mu_sum = mu.view([B, -1]).sum(1).unsqueeze(1).unsqueeze(2).unsqueeze(3) | |
mu_normed = mu / (mu_sum + 1e-6) | |
return mu, mu_normed | |
def make_layers(cfg, batch_norm=False): | |
layers = [] | |
in_channels = 3 | |
for v in cfg: | |
if v == 'M': | |
layers += [nn.MaxPool2d(kernel_size=2, stride=2)] | |
else: | |
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) | |
if batch_norm: | |
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] | |
else: | |
layers += [conv2d, nn.ReLU(inplace=True)] | |
in_channels = v | |
return nn.Sequential(*layers) | |
cfg = { | |
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512] | |
} | |
def vgg19(): | |
"""VGG 19-layer model (configuration "E") | |
model pre-trained on ImageNet | |
""" | |
model = VGG(make_layers(cfg['E'])) | |
model.load_state_dict(model_zoo.load_url(model_urls['vgg19']), strict=False) | |
return model | |