crowdcontrolhf / train_helper.py
promptsai's picture
Upload 28 files
2bd24e9 verified
raw
history blame
10.1 kB
import os
import time
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import numpy as np
from datetime import datetime
from datasets.crowd import Crowd_qnrf, Crowd_nwpu, Crowd_sh
from models import vgg19
from losses.ot_loss import OT_Loss
from utils.pytorch_utils import Save_Handle, AverageMeter
import utils.log_utils as log_utils
def train_collate(batch):
transposed_batch = list(zip(*batch))
images = torch.stack(transposed_batch[0], 0)
points = transposed_batch[1] # the number of points is not fixed, keep it as a list of tensor
gt_discretes = torch.stack(transposed_batch[2], 0)
return images, points, gt_discretes
class Trainer(object):
def __init__(self, args):
self.args = args
def setup(self):
args = self.args
sub_dir = 'input-{}_wot-{}_wtv-{}_reg-{}_nIter-{}_normCood-{}'.format(
args.crop_size, args.wot, args.wtv, args.reg, args.num_of_iter_in_ot, args.norm_cood)
self.save_dir = os.path.join('ckpts', sub_dir)
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
time_str = datetime.strftime(datetime.now(), '%m%d-%H%M%S')
self.logger = log_utils.get_logger(os.path.join(self.save_dir, 'train-{:s}.log'.format(time_str)))
log_utils.print_config(vars(args), self.logger)
if torch.cuda.is_available():
self.device = torch.device("cuda")
self.device_count = torch.cuda.device_count()
assert self.device_count == 1
self.logger.info('using {} gpus'.format(self.device_count))
else:
raise Exception("gpu is not available")
downsample_ratio = 8
if args.dataset.lower() == 'qnrf':
self.datasets = {x: Crowd_qnrf(os.path.join(args.data_dir, x),
args.crop_size, downsample_ratio, x) for x in ['train', 'val']}
elif args.dataset.lower() == 'nwpu':
self.datasets = {x: Crowd_nwpu(os.path.join(args.data_dir, x),
args.crop_size, downsample_ratio, x) for x in ['train', 'val']}
elif args.dataset.lower() == 'sha' or args.dataset.lower() == 'shb':
self.datasets = {'train': Crowd_sh(os.path.join(args.data_dir, 'train_data'),
args.crop_size, downsample_ratio, 'train'),
'val': Crowd_sh(os.path.join(args.data_dir, 'test_data'),
args.crop_size, downsample_ratio, 'val'),
}
else:
raise NotImplementedError
self.dataloaders = {x: DataLoader(self.datasets[x],
collate_fn=(train_collate
if x == 'train' else default_collate),
batch_size=(args.batch_size
if x == 'train' else 1),
shuffle=(True if x == 'train' else False),
num_workers=args.num_workers * self.device_count,
pin_memory=(True if x == 'train' else False))
for x in ['train', 'val']}
self.model = vgg19()
self.model.to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
self.start_epoch = 0
if args.resume:
self.logger.info('loading pretrained model from ' + args.resume)
suf = args.resume.rsplit('.', 1)[-1]
if suf == 'tar':
checkpoint = torch.load(args.resume, self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.start_epoch = checkpoint['epoch'] + 1
elif suf == 'pth':
self.model.load_state_dict(torch.load(args.resume, self.device))
else:
self.logger.info('random initialization')
self.ot_loss = OT_Loss(args.crop_size, downsample_ratio, args.norm_cood, self.device, args.num_of_iter_in_ot,
args.reg)
self.tv_loss = nn.L1Loss(reduction='none').to(self.device)
self.mse = nn.MSELoss().to(self.device)
self.mae = nn.L1Loss().to(self.device)
self.save_list = Save_Handle(max_num=1)
self.best_mae = np.inf
self.best_mse = np.inf
self.best_count = 0
def train(self):
"""training process"""
args = self.args
for epoch in range(self.start_epoch, args.max_epoch + 1):
self.logger.info('-' * 5 + 'Epoch {}/{}'.format(epoch, args.max_epoch) + '-' * 5)
self.epoch = epoch
self.train_eopch()
if epoch % args.val_epoch == 0 and epoch >= args.val_start:
self.val_epoch()
def train_eopch(self):
epoch_ot_loss = AverageMeter()
epoch_ot_obj_value = AverageMeter()
epoch_wd = AverageMeter()
epoch_count_loss = AverageMeter()
epoch_tv_loss = AverageMeter()
epoch_loss = AverageMeter()
epoch_mae = AverageMeter()
epoch_mse = AverageMeter()
epoch_start = time.time()
self.model.train() # Set model to training mode
for step, (inputs, points, gt_discrete) in enumerate(self.dataloaders['train']):
inputs = inputs.to(self.device)
gd_count = np.array([len(p) for p in points], dtype=np.float32)
points = [p.to(self.device) for p in points]
gt_discrete = gt_discrete.to(self.device)
N = inputs.size(0)
with torch.set_grad_enabled(True):
outputs, outputs_normed = self.model(inputs)
# Compute OT loss.
ot_loss, wd, ot_obj_value = self.ot_loss(outputs_normed, outputs, points)
ot_loss = ot_loss * self.args.wot
ot_obj_value = ot_obj_value * self.args.wot
epoch_ot_loss.update(ot_loss.item(), N)
epoch_ot_obj_value.update(ot_obj_value.item(), N)
epoch_wd.update(wd, N)
# Compute counting loss.
count_loss = self.mae(outputs.sum(1).sum(1).sum(1),
torch.from_numpy(gd_count).float().to(self.device))
epoch_count_loss.update(count_loss.item(), N)
# Compute TV loss.
gd_count_tensor = torch.from_numpy(gd_count).float().to(self.device).unsqueeze(1).unsqueeze(
2).unsqueeze(3)
gt_discrete_normed = gt_discrete / (gd_count_tensor + 1e-6)
tv_loss = (self.tv_loss(outputs_normed, gt_discrete_normed).sum(1).sum(1).sum(
1) * torch.from_numpy(gd_count).float().to(self.device)).mean(0) * self.args.wtv
epoch_tv_loss.update(tv_loss.item(), N)
loss = ot_loss + count_loss + tv_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
pred_count = torch.sum(outputs.view(N, -1), dim=1).detach().cpu().numpy()
pred_err = pred_count - gd_count
epoch_loss.update(loss.item(), N)
epoch_mse.update(np.mean(pred_err * pred_err), N)
epoch_mae.update(np.mean(abs(pred_err)), N)
self.logger.info(
'Epoch {} Train, Loss: {:.2f}, OT Loss: {:.2e}, Wass Distance: {:.2f}, OT obj value: {:.2f}, '
'Count Loss: {:.2f}, TV Loss: {:.2f}, MSE: {:.2f} MAE: {:.2f}, Cost {:.1f} sec'
.format(self.epoch, epoch_loss.get_avg(), epoch_ot_loss.get_avg(), epoch_wd.get_avg(),
epoch_ot_obj_value.get_avg(), epoch_count_loss.get_avg(), epoch_tv_loss.get_avg(),
np.sqrt(epoch_mse.get_avg()), epoch_mae.get_avg(),
time.time() - epoch_start))
model_state_dic = self.model.state_dict()
save_path = os.path.join(self.save_dir, '{}_ckpt.tar'.format(self.epoch))
torch.save({
'epoch': self.epoch,
'optimizer_state_dict': self.optimizer.state_dict(),
'model_state_dict': model_state_dic
}, save_path)
self.save_list.append(save_path)
def val_epoch(self):
args = self.args
epoch_start = time.time()
self.model.eval() # Set model to evaluate mode
epoch_res = []
for inputs, count, name in self.dataloaders['val']:
inputs = inputs.to(self.device)
assert inputs.size(0) == 1, 'the batch size should equal to 1 in validation mode'
with torch.set_grad_enabled(False):
outputs, _ = self.model(inputs)
res = count[0].item() - torch.sum(outputs).item()
epoch_res.append(res)
epoch_res = np.array(epoch_res)
mse = np.sqrt(np.mean(np.square(epoch_res)))
mae = np.mean(np.abs(epoch_res))
self.logger.info('Epoch {} Val, MSE: {:.2f} MAE: {:.2f}, Cost {:.1f} sec'
.format(self.epoch, mse, mae, time.time() - epoch_start))
model_state_dic = self.model.state_dict()
if (2.0 * mse + mae) < (2.0 * self.best_mse + self.best_mae):
self.best_mse = mse
self.best_mae = mae
self.logger.info("save best mse {:.2f} mae {:.2f} model epoch {}".format(self.best_mse,
self.best_mae,
self.epoch))
torch.save(model_state_dic, os.path.join(self.save_dir, 'best_model_{}.pth'.format(self.best_count)))
self.best_count += 1