Spaces:
Runtime error
Runtime error
import torch | |
from models import vgg19 | |
import gdown | |
from PIL import Image | |
from torchvision import transforms | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import scipy | |
model_path = "pretrained_models/model_qnrf.pth" | |
url = "https://drive.google.com/uc?id=1nnIHPaV9RGqK8JHL645zmRvkNrahD9ru" | |
gdown.download(url, model_path, quiet=False) | |
device = torch.device('cpu') # device can be "cpu" or "gpu" | |
model = vgg19() | |
model.to(device) | |
model.load_state_dict(torch.load(model_path, device)) | |
model.eval() | |
def predict(inp): | |
inp = Image.fromarray(inp.astype('uint8'), 'RGB') | |
inp = transforms.ToTensor()(inp).unsqueeze(0) | |
inp = inp.to(device) | |
with torch.set_grad_enabled(False): | |
outputs, _ = model(inp) | |
count = torch.sum(outputs).item() | |
vis_img = outputs[0, 0].cpu().numpy() | |
# normalize density map values from 0 to 1, then map it to 0-255. | |
vis_img = (vis_img - vis_img.min()) / (vis_img.max() - vis_img.min() + 1e-5) | |
vis_img = (vis_img * 255).astype(np.uint8) | |
vis_img = cv2.applyColorMap(vis_img, cv2.COLORMAP_JET) | |
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB) | |
return vis_img, int(count) | |
inputs = gr.Image(label="Image of Crowd") | |
outputs = [ | |
gr.Image(label="Predicted Density Map"), | |
gr.Label(label="Predicted Count") | |
] | |
# Assuming `title`, `desc`, and `examples` variables are defined elsewhere in your code. | |
title = "Your App Title" | |
desc = "Your App Description" | |
gr.Interface(fn=predict, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=desc, | |
allow_flagging="never").launch(share=True) |