AronaTTS / app.py
kdrkdrkdr's picture
edit files
d9e50d0
import json
import os
import re
import librosa
import numpy as np
import torch
from torch import no_grad, LongTensor
import commons
import utils
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence
from text.symbols import symbols
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def create_tts_fn(net_g, hps, speaker_ids):
def tts_fn(text, speaker, speed):
if limitation:
text_len = len(text)
max_len = 5000
if text_len > max_len:
return "Error: Text is too long", None
speaker_id = speaker_ids[speaker]
stn_tst = get_text(text, hps)
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
del stn_tst, x_tst, x_tst_lengths, sid
return "Success", (hps.data.sampling_rate, audio)
return tts_fn
css = """
#advanced-btn {
color: white;
border-color: black;
background: black;
font-size: .7rem !important;
line-height: 19px;
margin-top: 24px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
"""
if __name__ == '__main__':
models_tts = []
name = 'AronaTTS'
lang = '일본어 / 한국어 (Japanese / Korean)'
example = '[JA]先生、今日は天気が本当にいいですね。[JA][KO]선생님, 안녕하세요. my name is arona[KO]'
config_path = f"pretrained_model/arona_ms_istft_vits.json"
model_path = f"pretrained_model/arona_ms_istft_vits.pth"
cover_path = f"pretrained_model/cover.gif"
hps = utils.get_hparams_from_file(config_path)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
_ = net_g.eval()
utils.load_checkpoint(model_path, net_g, None)
net_g.eval()
speaker_ids = [0]
speakers = [name]
t = 'vits'
models_tts.append((name, cover_path, speakers, lang, example,
hps.symbols, create_tts_fn(net_g, hps, speaker_ids)))
app = gr.Blocks(css=css)
with app:
gr.Markdown("# BlueArchive Arona TTS Using VITS Model\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=openduckparty.AronaTTS)\n\n")
for i, (name, cover_path, speakers, lang, example, symbols, tts_fn
) in enumerate(models_tts):
with gr.Column():
gr.Markdown(f"## {name}\n\n"
f"![cover](file/{cover_path})\n\n"
f"lang: {lang}")
tts_input1 = gr.TextArea(label="Text (5000 words limitation)", value=example,
elem_id=f"tts-input{i}")
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
type="index", value=speakers[0])
tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.1, maximum=2, step=0.1)
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Output Message")
tts_output2 = gr.Audio(label="Output Audio")
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3],
[tts_output1, tts_output2])
_js=f"""
(i,phonemes) => {{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let text_input = root.querySelector("#tts-input{i}").querySelector("textarea");
let startPos = text_input.selectionStart;
let endPos = text_input.selectionEnd;
let oldTxt = text_input.value;
let result = oldTxt.substring(0, startPos) + phonemes[i] + oldTxt.substring(endPos);
text_input.value = result;
let x = window.scrollX, y = window.scrollY;
text_input.focus();
text_input.selectionStart = startPos + phonemes[i].length;
text_input.selectionEnd = startPos + phonemes[i].length;
text_input.blur();
window.scrollTo(x, y);
return [];
}}"""
app.queue(concurrency_count=3).launch(show_api=False)