Spaces:
Runtime error
Runtime error
# import sengiri | |
import re | |
import torch | |
import commons | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import text_to_sequence | |
def get_text(text, hps): | |
text_norm = text_to_sequence(text, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
hps = utils.get_hparams_from_file(f"pretrained_model/arona_ms_istft_vits_config.json") | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model).cuda() | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(f"pretrained_model/arona_ms_istft_vits.pth", net_g, None) | |
text = '物語は嘘から始まる。' | |
SPEECH_SPEED = 1 | |
stn_tst = get_text(text, hps) | |
with torch.no_grad(): | |
x_tst = stn_tst.cuda().unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda() | |
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1/SPEECH_SPEED)[0][0,0].data.cpu().float().numpy() | |