Spaces:
Runtime error
Runtime error
import json | |
import os | |
import re | |
import librosa | |
import numpy as np | |
import torch | |
from torch import no_grad, LongTensor | |
import commons | |
import utils | |
import gradio as gr | |
from models import SynthesizerTrn | |
from text import text_to_sequence | |
from text.symbols import symbols | |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces | |
def get_text(text, hps): | |
text_norm = text_to_sequence(text, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def create_tts_fn(net_g, hps, speaker_ids): | |
def tts_fn(text, speaker, speed): | |
if limitation: | |
text_len = len(text) | |
max_len = 5000 | |
if text_len > max_len: | |
return "Error: Text is too long", None | |
speaker_id = speaker_ids[speaker] | |
stn_tst = get_text(text, hps) | |
with no_grad(): | |
x_tst = stn_tst.unsqueeze(0) | |
x_tst_lengths = LongTensor([stn_tst.size(0)]) | |
sid = LongTensor([speaker_id]) | |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, | |
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() | |
del stn_tst, x_tst, x_tst_lengths, sid | |
return "Success", (hps.data.sampling_rate, audio) | |
return tts_fn | |
css = """ | |
#advanced-btn { | |
color: white; | |
border-color: black; | |
background: black; | |
font-size: .7rem !important; | |
line-height: 19px; | |
margin-top: 24px; | |
margin-bottom: 12px; | |
padding: 2px 8px; | |
border-radius: 14px !important; | |
} | |
#advanced-options { | |
display: none; | |
margin-bottom: 20px; | |
} | |
""" | |
if __name__ == '__main__': | |
models_tts = [] | |
name = 'AronaTTS' | |
lang = '일본어 / 한국어 (Japanese / Korean)' | |
example = '[JA]先生、今日は天気が本当にいいですね。[JA][KO]선생님, 안녕하세요. my name is arona[KO]' | |
config_path = f"pretrained_model/arona_ms_istft_vits.json" | |
model_path = f"pretrained_model/arona_ms_istft_vits.pth" | |
cover_path = f"pretrained_model/cover.gif" | |
hps = utils.get_hparams_from_file(config_path) | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model) | |
_ = net_g.eval() | |
utils.load_checkpoint(model_path, net_g, None) | |
net_g.eval() | |
speaker_ids = [0] | |
speakers = [name] | |
t = 'vits' | |
models_tts.append((name, cover_path, speakers, lang, example, | |
hps.symbols, create_tts_fn(net_g, hps, speaker_ids))) | |
app = gr.Blocks(css=css) | |
with app: | |
gr.Markdown("# BlueArchive Arona TTS Using VITS Model\n" | |
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=openduckparty.AronaTTS)\n\n") | |
for i, (name, cover_path, speakers, lang, example, symbols, tts_fn | |
) in enumerate(models_tts): | |
with gr.Column(): | |
gr.Markdown(f"## {name}\n\n" | |
f"![cover](file/{cover_path})\n\n" | |
f"lang: {lang}") | |
tts_input1 = gr.TextArea(label="Text (5000 words limitation)", value=example, | |
elem_id=f"tts-input{i}") | |
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers, | |
type="index", value=speakers[0]) | |
tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.1, maximum=2, step=0.1) | |
tts_submit = gr.Button("Generate", variant="primary") | |
tts_output1 = gr.Textbox(label="Output Message") | |
tts_output2 = gr.Audio(label="Output Audio") | |
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3], | |
[tts_output1, tts_output2]) | |
_js=f""" | |
(i,phonemes) => {{ | |
let root = document.querySelector("body > gradio-app"); | |
if (root.shadowRoot != null) | |
root = root.shadowRoot; | |
let text_input = root.querySelector("#tts-input{i}").querySelector("textarea"); | |
let startPos = text_input.selectionStart; | |
let endPos = text_input.selectionEnd; | |
let oldTxt = text_input.value; | |
let result = oldTxt.substring(0, startPos) + phonemes[i] + oldTxt.substring(endPos); | |
text_input.value = result; | |
let x = window.scrollX, y = window.scrollY; | |
text_input.focus(); | |
text_input.selectionStart = startPos + phonemes[i].length; | |
text_input.selectionEnd = startPos + phonemes[i].length; | |
text_input.blur(); | |
window.scrollTo(x, y); | |
return []; | |
}}""" | |
app.queue(concurrency_count=3).launch(show_api=False) |