StoryCrafterLLM / model.py
pro-grammer's picture
Update model.py
d82bf4b verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2Tokenizer
import tiktoken # Make sure tiktoken is imported
enc = tiktoken.get_encoding("gpt2") # Initialize the GPT-2 tokenizer
# Load the GPT-2 tokenizer (or your specific tokenizer)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Define the GPTLanguageModel class (the one you used for training)
# Ensure that this matches exactly the training-time definition
class Head(nn.Module):
def __init__(self, head_size, n_embd, block_size, dropout):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
v = self.value(x)
wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, head_size, n_embd, dropout):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, n_embd, block_size, dropout) for _ in range(n_heads)])
self.proj = nn.Linear(n_heads * head_size, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
head_outputs = [head(x) for head in self.heads]
concatenated = torch.cat(head_outputs, dim=-1)
out = self.proj(concatenated)
out = self.dropout(out)
return out
class FeedForward(nn.Module):
def __init__(self, n_embd, dropout=0.1, expansion_factor=4):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, expansion_factor * n_embd),
nn.ReLU(),
nn.Linear(expansion_factor * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embd, n_head, dropout=0.1):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout)
self.ffwd = FeedForward(n_embd, dropout)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self, vocab_size, n_embd, block_size, n_layer, n_head, device="cpu"):
super().__init__()
self.device = device
self.block_size = block_size
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.1, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
T = min(T, self.block_size)
idx = idx[:, :T]
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device))
x = tok_emb + pos_emb.unsqueeze(0)
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
targets = targets[:, :T]
B, T, C = logits.shape
logits = logits.reshape(B*T, C)
targets = targets.reshape(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -self.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# Now that we have the model definition, let's load the weights and perform inference
device = torch.device('cpu') # Use 'cuda' if you have a GPU
# Hyperparameters (match these with the ones you used for training)
vocab_size = 50257
n_heads = 8
n_layers = 6
head_size = 64
n_embd = 512
block_size = 128
dropout = 0.1
learning_rate = 3e-4
weight_decay = 0.1
# Create an instance of the model
model = GPTLanguageModel(vocab_size, n_embd, block_size, n_layers, n_heads).to(device)
# Load the trained weights
model.load_state_dict(torch.load("model_weights.pth", map_location=device))
# Set the model to evaluation mode
model.eval()
# Prompt
context = torch.tensor([enc.encode("In a faraway land, ")], dtype=torch.long, device=device)
# Test generation with a higher number of tokens and adjusted temperature
max_new_tokens = 150 # Increase the token limit for a longer generation
temperature = 0.5 # More focused, less random
generated_text_idx = model.generate(context, max_new_tokens)
generated_text = enc.decode(generated_text_idx[0].tolist())
print(f"Generated text: {generated_text}")