Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers import GPT2Tokenizer | |
import tiktoken # Make sure tiktoken is imported | |
enc = tiktoken.get_encoding("gpt2") # Initialize the GPT-2 tokenizer | |
# Load the GPT-2 tokenizer (or your specific tokenizer) | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
# Define the GPTLanguageModel class (the one you used for training) | |
# Ensure that this matches exactly the training-time definition | |
class Head(nn.Module): | |
def __init__(self, head_size, n_embd, block_size, dropout): | |
super().__init__() | |
self.key = nn.Linear(n_embd, head_size, bias=False) | |
self.query = nn.Linear(n_embd, head_size, bias=False) | |
self.value = nn.Linear(n_embd, head_size, bias=False) | |
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size))) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
B, T, C = x.shape | |
k = self.key(x) | |
q = self.query(x) | |
v = self.value(x) | |
wei = q @ k.transpose(-2, -1) * k.shape[-1]**-0.5 | |
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) | |
wei = F.softmax(wei, dim=-1) | |
wei = self.dropout(wei) | |
out = wei @ v | |
return out | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, n_heads, head_size, n_embd, dropout): | |
super().__init__() | |
self.heads = nn.ModuleList([Head(head_size, n_embd, block_size, dropout) for _ in range(n_heads)]) | |
self.proj = nn.Linear(n_heads * head_size, n_embd) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
head_outputs = [head(x) for head in self.heads] | |
concatenated = torch.cat(head_outputs, dim=-1) | |
out = self.proj(concatenated) | |
out = self.dropout(out) | |
return out | |
class FeedForward(nn.Module): | |
def __init__(self, n_embd, dropout=0.1, expansion_factor=4): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embd, expansion_factor * n_embd), | |
nn.ReLU(), | |
nn.Linear(expansion_factor * n_embd, n_embd), | |
nn.Dropout(dropout), | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Block(nn.Module): | |
def __init__(self, n_embd, n_head, dropout=0.1): | |
super().__init__() | |
head_size = n_embd // n_head | |
self.sa = MultiHeadAttention(n_head, head_size, n_embd, dropout) | |
self.ffwd = FeedForward(n_embd, dropout) | |
self.ln1 = nn.LayerNorm(n_embd) | |
self.ln2 = nn.LayerNorm(n_embd) | |
def forward(self, x): | |
x = x + self.sa(self.ln1(x)) | |
x = x + self.ffwd(self.ln2(x)) | |
return x | |
class GPTLanguageModel(nn.Module): | |
def __init__(self, vocab_size, n_embd, block_size, n_layer, n_head, device="cpu"): | |
super().__init__() | |
self.device = device | |
self.block_size = block_size | |
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) | |
self.position_embedding_table = nn.Embedding(block_size, n_embd) | |
self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range(n_layer)]) | |
self.ln_f = nn.LayerNorm(n_embd) | |
self.lm_head = nn.Linear(n_embd, vocab_size) | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
nn.init.normal_(module.weight, mean=0.1, std=0.02) | |
def forward(self, idx, targets=None): | |
B, T = idx.shape | |
T = min(T, self.block_size) | |
idx = idx[:, :T] | |
tok_emb = self.token_embedding_table(idx) | |
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) | |
x = tok_emb + pos_emb.unsqueeze(0) | |
x = self.blocks(x) | |
x = self.ln_f(x) | |
logits = self.lm_head(x) | |
loss = None | |
if targets is not None: | |
targets = targets[:, :T] | |
B, T, C = logits.shape | |
logits = logits.reshape(B*T, C) | |
targets = targets.reshape(B*T) | |
loss = F.cross_entropy(logits, targets) | |
return logits, loss | |
def generate(self, idx, max_new_tokens): | |
for _ in range(max_new_tokens): | |
idx_cond = idx[:, -self.block_size:] | |
logits, _ = self(idx_cond) | |
logits = logits[:, -1, :] | |
probs = F.softmax(logits, dim=-1) | |
idx_next = torch.multinomial(probs, num_samples=1) | |
idx = torch.cat((idx, idx_next), dim=1) | |
return idx | |
# Now that we have the model definition, let's load the weights and perform inference | |
device = torch.device('cpu') # Use 'cuda' if you have a GPU | |
# Hyperparameters (match these with the ones you used for training) | |
vocab_size = 50257 | |
n_heads = 8 | |
n_layers = 6 | |
head_size = 64 | |
n_embd = 512 | |
block_size = 128 | |
dropout = 0.1 | |
learning_rate = 3e-4 | |
weight_decay = 0.1 | |
# Create an instance of the model | |
model = GPTLanguageModel(vocab_size, n_embd, block_size, n_layers, n_heads).to(device) | |
# Load the trained weights | |
model.load_state_dict(torch.load("model_weights.pth", map_location=device)) | |
# Set the model to evaluation mode | |
model.eval() | |
# Prompt | |
context = torch.tensor([enc.encode("In a faraway land, ")], dtype=torch.long, device=device) | |
# Test generation with a higher number of tokens and adjusted temperature | |
max_new_tokens = 150 # Increase the token limit for a longer generation | |
temperature = 0.5 # More focused, less random | |
generated_text_idx = model.generate(context, max_new_tokens) | |
generated_text = enc.decode(generated_text_idx[0].tolist()) | |
print(f"Generated text: {generated_text}") |