Spaces:
Running
on
Zero
Running
on
Zero
prithivMLmods
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import os
|
2 |
from collections.abc import Iterator
|
3 |
from threading import Thread
|
4 |
-
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
import gradio as gr
|
7 |
import spaces
|
8 |
import torch
|
@@ -28,29 +27,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
28 |
model.config.sliding_window = 4096
|
29 |
model.eval()
|
30 |
|
31 |
-
def generate_knowledge_graph():
|
32 |
-
# Create a simple knowledge graph
|
33 |
-
G = nx.Graph()
|
34 |
-
G.add_node("AI", title="Artificial Intelligence")
|
35 |
-
G.add_node("ML", title="Machine Learning")
|
36 |
-
G.add_node("DL", title="Deep Learning")
|
37 |
-
G.add_edge("AI", "ML")
|
38 |
-
G.add_edge("ML", "DL")
|
39 |
-
|
40 |
-
# Draw the graph using matplotlib
|
41 |
-
plt.figure(figsize=(8, 6))
|
42 |
-
pos = nx.spring_layout(G)
|
43 |
-
nx.draw(G, pos, with_labels=True, node_size=3000, node_color="lightblue", font_size=10, font_weight="bold")
|
44 |
-
plt.title("Knowledge Graph")
|
45 |
-
|
46 |
-
# Save the graph as a PDF
|
47 |
-
pdf_path = "knowledge_graph.pdf"
|
48 |
-
plt.savefig(pdf_path, format="pdf")
|
49 |
-
plt.close()
|
50 |
-
|
51 |
-
return pdf_path
|
52 |
|
53 |
-
@spaces.GPU(
|
54 |
def generate(
|
55 |
message: str,
|
56 |
chat_history: list[dict],
|
@@ -63,17 +41,15 @@ def generate(
|
|
63 |
conversation = chat_history.copy()
|
64 |
conversation.append({"role": "user", "content": message})
|
65 |
|
66 |
-
# Tokenize the input
|
67 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
68 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
69 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
70 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
71 |
input_ids = input_ids.to(model.device)
|
72 |
|
73 |
-
# Set up the streamer
|
74 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
75 |
generate_kwargs = dict(
|
76 |
-
input_ids
|
77 |
streamer=streamer,
|
78 |
max_new_tokens=max_new_tokens,
|
79 |
do_sample=True,
|
@@ -83,22 +59,14 @@ def generate(
|
|
83 |
num_beams=1,
|
84 |
repetition_penalty=repetition_penalty,
|
85 |
)
|
86 |
-
|
87 |
-
# Start the generation in a separate thread
|
88 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
89 |
t.start()
|
90 |
|
91 |
-
# Stream the output
|
92 |
outputs = []
|
93 |
for text in streamer:
|
94 |
outputs.append(text)
|
95 |
yield "".join(outputs)
|
96 |
|
97 |
-
# Ensure the thread is joined after completion
|
98 |
-
t.join()
|
99 |
-
|
100 |
-
# Generate the knowledge graph PDF file
|
101 |
-
pdf_path = generate_knowledge_graph()
|
102 |
|
103 |
demo = gr.ChatInterface(
|
104 |
fn=generate,
|
@@ -138,15 +106,13 @@ demo = gr.ChatInterface(
|
|
138 |
step=0.05,
|
139 |
value=1.2,
|
140 |
),
|
141 |
-
gr.File(label="Download Knowledge Graph (PDF)", value=pdf_path, visible=True),
|
142 |
],
|
143 |
stop_btn=None,
|
144 |
examples=[
|
145 |
["Write a Python function to reverses a string if it's length is a multiple of 4. def reverse_string(str1): if len(str1) % 4 == 0: return ''.join(reversed(str1)) return str1 print(reverse_string('abcd')) print(reverse_string('python')) "],
|
146 |
["Rectangle $ABCD$ is the base of pyramid $PABCD$. If $AB = 10$, $BC = 5$, $\overline{PA}\perp \text{plane } ABCD$, and $PA = 8$, then what is the volume of $PABCD$?"],
|
147 |
["Difference between List comprehension and Lambda in Python lst = [x ** 2 for x in range (1, 11) if x % 2 == 1] print(lst)"],
|
148 |
-
["How
|
149 |
-
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
150 |
],
|
151 |
cache_examples=False,
|
152 |
type="messages",
|
@@ -155,5 +121,6 @@ demo = gr.ChatInterface(
|
|
155 |
fill_height=True,
|
156 |
)
|
157 |
|
|
|
158 |
if __name__ == "__main__":
|
159 |
-
demo.queue(max_size=20).launch(
|
|
|
1 |
import os
|
2 |
from collections.abc import Iterator
|
3 |
from threading import Thread
|
4 |
+
|
|
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
|
|
27 |
model.config.sliding_window = 4096
|
28 |
model.eval()
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
@spaces.GPU()
|
32 |
def generate(
|
33 |
message: str,
|
34 |
chat_history: list[dict],
|
|
|
41 |
conversation = chat_history.copy()
|
42 |
conversation.append({"role": "user", "content": message})
|
43 |
|
|
|
44 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
45 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
46 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
47 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
48 |
input_ids = input_ids.to(model.device)
|
49 |
|
|
|
50 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
51 |
generate_kwargs = dict(
|
52 |
+
{"input_ids": input_ids},
|
53 |
streamer=streamer,
|
54 |
max_new_tokens=max_new_tokens,
|
55 |
do_sample=True,
|
|
|
59 |
num_beams=1,
|
60 |
repetition_penalty=repetition_penalty,
|
61 |
)
|
|
|
|
|
62 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
63 |
t.start()
|
64 |
|
|
|
65 |
outputs = []
|
66 |
for text in streamer:
|
67 |
outputs.append(text)
|
68 |
yield "".join(outputs)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
demo = gr.ChatInterface(
|
72 |
fn=generate,
|
|
|
106 |
step=0.05,
|
107 |
value=1.2,
|
108 |
),
|
|
|
109 |
],
|
110 |
stop_btn=None,
|
111 |
examples=[
|
112 |
["Write a Python function to reverses a string if it's length is a multiple of 4. def reverse_string(str1): if len(str1) % 4 == 0: return ''.join(reversed(str1)) return str1 print(reverse_string('abcd')) print(reverse_string('python')) "],
|
113 |
["Rectangle $ABCD$ is the base of pyramid $PABCD$. If $AB = 10$, $BC = 5$, $\overline{PA}\perp \text{plane } ABCD$, and $PA = 8$, then what is the volume of $PABCD$?"],
|
114 |
["Difference between List comprehension and Lambda in Python lst = [x ** 2 for x in range (1, 11) if x % 2 == 1] print(lst)"],
|
115 |
+
["How Many R's in the Word 'STRAWBERRY' ?"],
|
|
|
116 |
],
|
117 |
cache_examples=False,
|
118 |
type="messages",
|
|
|
121 |
fill_height=True,
|
122 |
)
|
123 |
|
124 |
+
|
125 |
if __name__ == "__main__":
|
126 |
+
demo.queue(max_size=20).launch()
|