Spaces:
Running
on
Zero
Running
on
Zero
prithivMLmods
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
from collections.abc import Iterator
|
5 |
-
from threading import Thread
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
7 |
-
from pyvis.network import Network
|
8 |
-
import networkx as nx
|
9 |
-
import os
|
10 |
|
11 |
DESCRIPTION = """
|
12 |
# GWQ PREV
|
@@ -28,19 +29,20 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
28 |
model.config.sliding_window = 4096
|
29 |
model.eval()
|
30 |
|
31 |
-
def
|
32 |
-
#
|
33 |
G = nx.Graph()
|
34 |
words = text.split()
|
35 |
for i in range(len(words) - 1):
|
36 |
G.add_edge(words[i], words[i + 1])
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
44 |
|
45 |
@spaces.GPU(duration=120)
|
46 |
def generate(
|
@@ -51,7 +53,6 @@ def generate(
|
|
51 |
top_p: float = 0.9,
|
52 |
top_k: int = 50,
|
53 |
repetition_penalty: float = 1.2,
|
54 |
-
visualize_graph: bool = False,
|
55 |
) -> Iterator[str]:
|
56 |
conversation = chat_history.copy()
|
57 |
conversation.append({"role": "user", "content": message})
|
@@ -82,10 +83,9 @@ def generate(
|
|
82 |
outputs.append(text)
|
83 |
yield "".join(outputs)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
yield f"Knowledge graph saved to {graph_file}"
|
89 |
|
90 |
demo = gr.ChatInterface(
|
91 |
fn=generate,
|
@@ -125,7 +125,6 @@ demo = gr.ChatInterface(
|
|
125 |
step=0.05,
|
126 |
value=1.2,
|
127 |
),
|
128 |
-
gr.Checkbox(label="Visualize Knowledge Graph", value=False),
|
129 |
],
|
130 |
stop_btn=None,
|
131 |
examples=[
|
@@ -139,6 +138,7 @@ demo = gr.ChatInterface(
|
|
139 |
description=DESCRIPTION,
|
140 |
css_paths="style.css",
|
141 |
fill_height=True,
|
|
|
142 |
)
|
143 |
|
144 |
if __name__ == "__main__":
|
|
|
1 |
+
import os
|
2 |
+
from collections.abc import Iterator
|
3 |
+
from threading import Thread
|
4 |
+
import networkx as nx
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
import gradio as gr
|
8 |
import spaces
|
9 |
import torch
|
|
|
|
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
|
|
|
11 |
|
12 |
DESCRIPTION = """
|
13 |
# GWQ PREV
|
|
|
29 |
model.config.sliding_window = 4096
|
30 |
model.eval()
|
31 |
|
32 |
+
def create_knowledge_graph_image(text):
|
33 |
+
# Example: Create a simple knowledge graph from the text
|
34 |
G = nx.Graph()
|
35 |
words = text.split()
|
36 |
for i in range(len(words) - 1):
|
37 |
G.add_edge(words[i], words[i + 1])
|
38 |
+
|
39 |
+
# Draw the graph
|
40 |
+
plt.figure(figsize=(8, 6))
|
41 |
+
pos = nx.spring_layout(G)
|
42 |
+
nx.draw(G, pos, with_labels=True, node_color='lightblue', edge_color='gray', node_size=2000, font_size=10)
|
43 |
+
plt.savefig("knowledge_graph.png")
|
44 |
+
plt.close()
|
45 |
+
return "knowledge_graph.png"
|
46 |
|
47 |
@spaces.GPU(duration=120)
|
48 |
def generate(
|
|
|
53 |
top_p: float = 0.9,
|
54 |
top_k: int = 50,
|
55 |
repetition_penalty: float = 1.2,
|
|
|
56 |
) -> Iterator[str]:
|
57 |
conversation = chat_history.copy()
|
58 |
conversation.append({"role": "user", "content": message})
|
|
|
83 |
outputs.append(text)
|
84 |
yield "".join(outputs)
|
85 |
|
86 |
+
# After generating the text, create the knowledge graph image
|
87 |
+
knowledge_graph_image = create_knowledge_graph_image("".join(outputs))
|
88 |
+
yield knowledge_graph_image
|
|
|
89 |
|
90 |
demo = gr.ChatInterface(
|
91 |
fn=generate,
|
|
|
125 |
step=0.05,
|
126 |
value=1.2,
|
127 |
),
|
|
|
128 |
],
|
129 |
stop_btn=None,
|
130 |
examples=[
|
|
|
138 |
description=DESCRIPTION,
|
139 |
css_paths="style.css",
|
140 |
fill_height=True,
|
141 |
+
additional_outputs=[gr.Image(label="Knowledge Graph")]
|
142 |
)
|
143 |
|
144 |
if __name__ == "__main__":
|