Spaces:
Running
on
Zero
Running
on
Zero
prithivMLmods
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,127 +1,127 @@
|
|
1 |
-
import os
|
2 |
-
from collections.abc import Iterator
|
3 |
-
from threading import Thread
|
4 |
-
|
5 |
-
import gradio as gr
|
6 |
-
import spaces
|
7 |
-
import torch
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
-
|
10 |
-
DESCRIPTION = """
|
11 |
-
# GWQ PREV
|
12 |
-
"""
|
13 |
-
|
14 |
-
MAX_MAX_NEW_TOKENS = 2048
|
15 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
16 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
17 |
-
|
18 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19 |
-
|
20 |
-
model_id = "prithivMLmods/GWQ2b"
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(
|
23 |
-
model_id,
|
24 |
-
device_map="auto",
|
25 |
-
torch_dtype=torch.bfloat16,
|
26 |
-
)
|
27 |
-
model.config.sliding_window = 4096
|
28 |
-
model.eval()
|
29 |
-
|
30 |
-
|
31 |
-
@spaces.GPU()
|
32 |
-
def generate(
|
33 |
-
message: str,
|
34 |
-
chat_history: list[dict],
|
35 |
-
max_new_tokens: int = 1024,
|
36 |
-
temperature: float = 0.6,
|
37 |
-
top_p: float = 0.9,
|
38 |
-
top_k: int = 50,
|
39 |
-
repetition_penalty: float = 1.2,
|
40 |
-
) -> Iterator[str]:
|
41 |
-
conversation = chat_history.copy()
|
42 |
-
conversation.append({"role": "user", "content": message})
|
43 |
-
|
44 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
45 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
46 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
47 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
48 |
-
input_ids = input_ids.to(model.device)
|
49 |
-
|
50 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
51 |
-
generate_kwargs = dict(
|
52 |
-
{"input_ids": input_ids},
|
53 |
-
streamer=streamer,
|
54 |
-
max_new_tokens=max_new_tokens,
|
55 |
-
do_sample=True,
|
56 |
-
top_p=top_p,
|
57 |
-
top_k=top_k,
|
58 |
-
temperature=temperature,
|
59 |
-
num_beams=1,
|
60 |
-
repetition_penalty=repetition_penalty,
|
61 |
-
)
|
62 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
63 |
-
t.start()
|
64 |
-
|
65 |
-
outputs = []
|
66 |
-
for text in streamer:
|
67 |
-
outputs.append(text)
|
68 |
-
yield "".join(outputs)
|
69 |
-
|
70 |
-
|
71 |
-
demo = gr.ChatInterface(
|
72 |
-
fn=generate,
|
73 |
-
additional_inputs=[
|
74 |
-
gr.Slider(
|
75 |
-
label="Max new tokens",
|
76 |
-
minimum=1,
|
77 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
78 |
-
step=1,
|
79 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
80 |
-
),
|
81 |
-
gr.Slider(
|
82 |
-
label="Temperature",
|
83 |
-
minimum=0.1,
|
84 |
-
maximum=4.0,
|
85 |
-
step=0.1,
|
86 |
-
value=0.6,
|
87 |
-
),
|
88 |
-
gr.Slider(
|
89 |
-
label="Top-p (nucleus sampling)",
|
90 |
-
minimum=0.05,
|
91 |
-
maximum=1.0,
|
92 |
-
step=0.05,
|
93 |
-
value=0.9,
|
94 |
-
),
|
95 |
-
gr.Slider(
|
96 |
-
label="Top-k",
|
97 |
-
minimum=1,
|
98 |
-
maximum=1000,
|
99 |
-
step=1,
|
100 |
-
value=50,
|
101 |
-
),
|
102 |
-
gr.Slider(
|
103 |
-
label="Repetition penalty",
|
104 |
-
minimum=1.0,
|
105 |
-
maximum=2.0,
|
106 |
-
step=0.05,
|
107 |
-
value=1.2,
|
108 |
-
),
|
109 |
-
],
|
110 |
-
stop_btn=None,
|
111 |
-
examples=[
|
112 |
-
["Hello there! How are you doing?"],
|
113 |
-
["Can you explain briefly to me what is the Python programming language?"],
|
114 |
-
["Explain the plot of Cinderella in a sentence."],
|
115 |
-
["How many hours does it take a man to eat a Helicopter?"],
|
116 |
-
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
117 |
-
],
|
118 |
-
cache_examples=False,
|
119 |
-
type="messages",
|
120 |
-
description=DESCRIPTION,
|
121 |
-
css_paths="style.css",
|
122 |
-
fill_height=True,
|
123 |
-
)
|
124 |
-
|
125 |
-
|
126 |
-
if __name__ == "__main__":
|
127 |
demo.queue(max_size=20).launch()
|
|
|
1 |
+
import os
|
2 |
+
from collections.abc import Iterator
|
3 |
+
from threading import Thread
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
+
|
10 |
+
DESCRIPTION = """
|
11 |
+
# GWQ PREV
|
12 |
+
"""
|
13 |
+
|
14 |
+
MAX_MAX_NEW_TOKENS = 2048
|
15 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
16 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
17 |
+
|
18 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
model_id = "prithivMLmods/GWQ2b"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_id,
|
24 |
+
device_map="auto",
|
25 |
+
torch_dtype=torch.bfloat16,
|
26 |
+
)
|
27 |
+
model.config.sliding_window = 4096
|
28 |
+
model.eval()
|
29 |
+
|
30 |
+
|
31 |
+
@spaces.GPU(duration=120)
|
32 |
+
def generate(
|
33 |
+
message: str,
|
34 |
+
chat_history: list[dict],
|
35 |
+
max_new_tokens: int = 1024,
|
36 |
+
temperature: float = 0.6,
|
37 |
+
top_p: float = 0.9,
|
38 |
+
top_k: int = 50,
|
39 |
+
repetition_penalty: float = 1.2,
|
40 |
+
) -> Iterator[str]:
|
41 |
+
conversation = chat_history.copy()
|
42 |
+
conversation.append({"role": "user", "content": message})
|
43 |
+
|
44 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
45 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
46 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
47 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
48 |
+
input_ids = input_ids.to(model.device)
|
49 |
+
|
50 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
51 |
+
generate_kwargs = dict(
|
52 |
+
{"input_ids": input_ids},
|
53 |
+
streamer=streamer,
|
54 |
+
max_new_tokens=max_new_tokens,
|
55 |
+
do_sample=True,
|
56 |
+
top_p=top_p,
|
57 |
+
top_k=top_k,
|
58 |
+
temperature=temperature,
|
59 |
+
num_beams=1,
|
60 |
+
repetition_penalty=repetition_penalty,
|
61 |
+
)
|
62 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
63 |
+
t.start()
|
64 |
+
|
65 |
+
outputs = []
|
66 |
+
for text in streamer:
|
67 |
+
outputs.append(text)
|
68 |
+
yield "".join(outputs)
|
69 |
+
|
70 |
+
|
71 |
+
demo = gr.ChatInterface(
|
72 |
+
fn=generate,
|
73 |
+
additional_inputs=[
|
74 |
+
gr.Slider(
|
75 |
+
label="Max new tokens",
|
76 |
+
minimum=1,
|
77 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
78 |
+
step=1,
|
79 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
80 |
+
),
|
81 |
+
gr.Slider(
|
82 |
+
label="Temperature",
|
83 |
+
minimum=0.1,
|
84 |
+
maximum=4.0,
|
85 |
+
step=0.1,
|
86 |
+
value=0.6,
|
87 |
+
),
|
88 |
+
gr.Slider(
|
89 |
+
label="Top-p (nucleus sampling)",
|
90 |
+
minimum=0.05,
|
91 |
+
maximum=1.0,
|
92 |
+
step=0.05,
|
93 |
+
value=0.9,
|
94 |
+
),
|
95 |
+
gr.Slider(
|
96 |
+
label="Top-k",
|
97 |
+
minimum=1,
|
98 |
+
maximum=1000,
|
99 |
+
step=1,
|
100 |
+
value=50,
|
101 |
+
),
|
102 |
+
gr.Slider(
|
103 |
+
label="Repetition penalty",
|
104 |
+
minimum=1.0,
|
105 |
+
maximum=2.0,
|
106 |
+
step=0.05,
|
107 |
+
value=1.2,
|
108 |
+
),
|
109 |
+
],
|
110 |
+
stop_btn=None,
|
111 |
+
examples=[
|
112 |
+
["Hello there! How are you doing?"],
|
113 |
+
["Can you explain briefly to me what is the Python programming language?"],
|
114 |
+
["Explain the plot of Cinderella in a sentence."],
|
115 |
+
["How many hours does it take a man to eat a Helicopter?"],
|
116 |
+
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
117 |
+
],
|
118 |
+
cache_examples=False,
|
119 |
+
type="messages",
|
120 |
+
description=DESCRIPTION,
|
121 |
+
css_paths="style.css",
|
122 |
+
fill_height=True,
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
demo.queue(max_size=20).launch()
|