Spaces:
Running
Running
Upload 10 files
Browse files- flair_recognizer.py +14 -5
- index.md +8 -4
- openai_fake_data_generator.py +45 -13
- presidio_helpers.py +120 -63
- presidio_nlp_engine_config.py +137 -0
- presidio_streamlit.py +243 -118
- requirements.txt +5 -1
- text_analytics_wrapper.py +123 -0
flair_recognizer.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import logging
|
2 |
from typing import Optional, List, Tuple, Set
|
3 |
|
@@ -74,17 +76,24 @@ class FlairRecognizer(EntityRecognizer):
|
|
74 |
supported_entities: Optional[List[str]] = None,
|
75 |
check_label_groups: Optional[Tuple[Set, Set]] = None,
|
76 |
model: SequenceTagger = None,
|
|
|
77 |
):
|
78 |
self.check_label_groups = (
|
79 |
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
|
80 |
)
|
81 |
|
82 |
supported_entities = supported_entities if supported_entities else self.ENTITIES
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
super().__init__(
|
90 |
supported_entities=supported_entities,
|
|
|
1 |
+
## Taken from https://github.com/microsoft/presidio/blob/main/docs/samples/python/flair_recognizer.py
|
2 |
+
|
3 |
import logging
|
4 |
from typing import Optional, List, Tuple, Set
|
5 |
|
|
|
76 |
supported_entities: Optional[List[str]] = None,
|
77 |
check_label_groups: Optional[Tuple[Set, Set]] = None,
|
78 |
model: SequenceTagger = None,
|
79 |
+
model_path: Optional[str] = None
|
80 |
):
|
81 |
self.check_label_groups = (
|
82 |
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
|
83 |
)
|
84 |
|
85 |
supported_entities = supported_entities if supported_entities else self.ENTITIES
|
86 |
+
|
87 |
+
if model and model_path:
|
88 |
+
raise ValueError("Only one of model or model_path should be provided.")
|
89 |
+
elif model and not model_path:
|
90 |
+
self.model = model
|
91 |
+
elif not model and model_path:
|
92 |
+
print(f"Loading model from {model_path}")
|
93 |
+
self.model = SequenceTagger.load(model_path)
|
94 |
+
else:
|
95 |
+
print(f"Loading model for language {supported_language}")
|
96 |
+
self.model = SequenceTagger.load(self.MODEL_LANGUAGES.get(supported_language))
|
97 |
|
98 |
super().__init__(
|
99 |
supported_entities=supported_entities,
|
index.md
CHANGED
@@ -2,15 +2,19 @@
|
|
2 |
Here's a simple app, written in pure Python, to create a demo website for Presidio.
|
3 |
The app is based on the [streamlit](https://streamlit.io/) package.
|
4 |
|
|
|
|
|
5 |
## Requirements
|
|
|
6 |
1. Install dependencies (preferably in a virtual environment)
|
7 |
|
8 |
```sh
|
9 |
-
pip install
|
10 |
```
|
|
|
11 |
|
12 |
-
2.
|
13 |
-
3. *Optional*: Update the `analyzer_engine` and `anonymizer_engine` functions for your specific implementation
|
14 |
3. Start the app:
|
15 |
|
16 |
```sh
|
@@ -19,4 +23,4 @@ streamlit run presidio_streamlit.py
|
|
19 |
|
20 |
## Output
|
21 |
Output should be similar to this screenshot:
|
22 |
-
![image](https://user-images.githubusercontent.com/3776619/
|
|
|
2 |
Here's a simple app, written in pure Python, to create a demo website for Presidio.
|
3 |
The app is based on the [streamlit](https://streamlit.io/) package.
|
4 |
|
5 |
+
A live version can be found here: https://huggingface.co/spaces/presidio/presidio_demo
|
6 |
+
|
7 |
## Requirements
|
8 |
+
1. Clone the repo and move to the `docs/samples/python/streamlit ` folder
|
9 |
1. Install dependencies (preferably in a virtual environment)
|
10 |
|
11 |
```sh
|
12 |
+
pip install -r requirements
|
13 |
```
|
14 |
+
> Note: This would install additional packages such as `transformers` and `flair` which are not mandatory for using Presidio.
|
15 |
|
16 |
+
2.
|
17 |
+
3. *Optional*: Update the `analyzer_engine` and `anonymizer_engine` functions for your specific implementation (in `presidio_helpers.py`).
|
18 |
3. Start the app:
|
19 |
|
20 |
```sh
|
|
|
23 |
|
24 |
## Output
|
25 |
Output should be similar to this screenshot:
|
26 |
+
![image](https://user-images.githubusercontent.com/3776619/232289541-d59992e1-52a4-44c1-b904-b22c72c02a5b.png)
|
openai_fake_data_generator.py
CHANGED
@@ -1,25 +1,50 @@
|
|
|
|
|
|
|
|
1 |
import openai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
4 |
"""Set the OpenAI API key.
|
5 |
-
:param
|
|
|
6 |
"""
|
7 |
-
openai.api_key = openai_key
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def call_completion_model(
|
11 |
-
prompt: str,
|
|
|
|
|
|
|
12 |
) -> str:
|
13 |
"""Creates a request for the OpenAI Completion service and returns the response.
|
14 |
|
15 |
:param prompt: The prompt for the completion model
|
16 |
:param model: OpenAI model name
|
17 |
:param max_tokens: Model's max_tokens parameter
|
|
|
18 |
"""
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
return response["choices"][0].text
|
25 |
|
@@ -32,16 +57,23 @@ def create_prompt(anonymized_text: str) -> str:
|
|
32 |
"""
|
33 |
|
34 |
prompt = f"""
|
35 |
-
Your role is to create synthetic text based on de-identified text with placeholders instead of
|
36 |
-
Replace the placeholders (e.g.
|
37 |
|
38 |
Instructions:
|
39 |
|
40 |
-
Use completely random numbers, so every digit is drawn between 0 and 9.
|
41 |
-
Use realistic names that come from diverse genders, ethnicities and countries.
|
42 |
-
If there are no placeholders, return the text as is and provide an answer.
|
|
|
|
|
|
|
43 |
input: How do I change the limit on my credit card {{credit_card_number}}?
|
44 |
output: How do I change the limit on my credit card 2539 3519 2345 1555?
|
|
|
|
|
|
|
|
|
45 |
input: {anonymized_text}
|
46 |
output:
|
47 |
"""
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
import openai
|
5 |
+
import logging
|
6 |
+
|
7 |
+
logger = logging.getLogger("presidio-streamlit")
|
8 |
+
|
9 |
+
OpenAIParams = namedtuple(
|
10 |
+
"open_ai_params",
|
11 |
+
["openai_key", "model", "api_base", "deployment_name", "api_version", "api_type"],
|
12 |
+
)
|
13 |
|
14 |
+
|
15 |
+
def set_openai_params(openai_params: OpenAIParams):
|
16 |
"""Set the OpenAI API key.
|
17 |
+
:param openai_params: OpenAIParams object with the following fields: key, model, api version, deployment_name,
|
18 |
+
The latter only relate to Azure OpenAI deployments.
|
19 |
"""
|
20 |
+
openai.api_key = openai_params.openai_key
|
21 |
+
openai.api_version = openai_params.api_version
|
22 |
+
if openai_params.api_base:
|
23 |
+
openai.api_base = openai_params.api_base
|
24 |
+
openai.api_type = openai_params.api_type
|
25 |
|
26 |
|
27 |
def call_completion_model(
|
28 |
+
prompt: str,
|
29 |
+
model: str = "text-davinci-003",
|
30 |
+
max_tokens: int = 512,
|
31 |
+
deployment_id: Optional[str] = None,
|
32 |
) -> str:
|
33 |
"""Creates a request for the OpenAI Completion service and returns the response.
|
34 |
|
35 |
:param prompt: The prompt for the completion model
|
36 |
:param model: OpenAI model name
|
37 |
:param max_tokens: Model's max_tokens parameter
|
38 |
+
:param deployment_id: Azure OpenAI deployment ID
|
39 |
"""
|
40 |
+
if deployment_id:
|
41 |
+
response = openai.Completion.create(
|
42 |
+
deployment_id=deployment_id, model=model, prompt=prompt, max_tokens=max_tokens
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
response = openai.Completion.create(
|
46 |
+
model=model, prompt=prompt, max_tokens=max_tokens
|
47 |
+
)
|
48 |
|
49 |
return response["choices"][0].text
|
50 |
|
|
|
57 |
"""
|
58 |
|
59 |
prompt = f"""
|
60 |
+
Your role is to create synthetic text based on de-identified text with placeholders instead of Personally Identifiable Information (PII).
|
61 |
+
Replace the placeholders (e.g. ,<PERSON>, {{DATE}}, {{ip_address}}) with fake values.
|
62 |
|
63 |
Instructions:
|
64 |
|
65 |
+
a. Use completely random numbers, so every digit is drawn between 0 and 9.
|
66 |
+
b. Use realistic names that come from diverse genders, ethnicities and countries.
|
67 |
+
c. If there are no placeholders, return the text as is and provide an answer.
|
68 |
+
d. Keep the formatting as close to the original as possible.
|
69 |
+
e. If PII exists in the input, replace it with fake values in the output.
|
70 |
+
|
71 |
input: How do I change the limit on my credit card {{credit_card_number}}?
|
72 |
output: How do I change the limit on my credit card 2539 3519 2345 1555?
|
73 |
+
input: <PERSON> was the chief science officer at <ORGANIZATION>.
|
74 |
+
output: Katherine Buckjov was the chief science officer at NASA.
|
75 |
+
input: Cameroon lives in <LOCATION>.
|
76 |
+
output: Vladimir lives in Moscow.
|
77 |
input: {anonymized_text}
|
78 |
output:
|
79 |
"""
|
presidio_helpers.py
CHANGED
@@ -1,79 +1,85 @@
|
|
1 |
"""
|
2 |
Helper methods for the Presidio Streamlit app
|
3 |
"""
|
4 |
-
from typing import List, Optional
|
5 |
-
|
6 |
-
import spacy
|
7 |
import streamlit as st
|
8 |
-
from presidio_analyzer import
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from presidio_anonymizer import AnonymizerEngine
|
11 |
from presidio_anonymizer.entities import OperatorConfig
|
12 |
|
13 |
-
from flair_recognizer import FlairRecognizer
|
14 |
from openai_fake_data_generator import (
|
15 |
-
|
16 |
call_completion_model,
|
17 |
create_prompt,
|
|
|
18 |
)
|
19 |
-
from
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
)
|
24 |
|
|
|
25 |
|
26 |
-
@st.cache_resource
|
27 |
-
def analyzer_engine(model_path: str):
|
28 |
-
"""Return AnalyzerEngine.
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
"StanfordAIMI/stanford-deidentifier-base",
|
32 |
"obi/deid_roberta_i2b2",
|
33 |
"en_core_web_lg"
|
|
|
|
|
34 |
"""
|
35 |
|
36 |
-
registry = RecognizerRegistry()
|
37 |
-
registry.load_predefined_recognizers()
|
38 |
-
|
39 |
# Set up NLP Engine according to the model of choice
|
40 |
-
if
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
flair_recognizer = FlairRecognizer()
|
49 |
-
nlp_configuration = {
|
50 |
-
"nlp_engine_name": "spacy",
|
51 |
-
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
52 |
-
}
|
53 |
-
registry.add_recognizer(flair_recognizer)
|
54 |
-
registry.remove_recognizer("SpacyRecognizer")
|
55 |
else:
|
56 |
-
|
57 |
-
spacy.cli.download("en_core_web_sm")
|
58 |
-
# Using a small spaCy model + a HF NER model
|
59 |
-
transformers_recognizer = TransformersRecognizer(model_path=model_path)
|
60 |
-
registry.remove_recognizer("SpacyRecognizer")
|
61 |
-
if model_path == "StanfordAIMI/stanford-deidentifier-base":
|
62 |
-
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
|
63 |
-
elif model_path == "obi/deid_roberta_i2b2":
|
64 |
-
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
|
65 |
-
|
66 |
-
# Use small spaCy model, no need for both spacy and HF models
|
67 |
-
# The transformers model is used here as a recognizer, not as an NlpEngine
|
68 |
-
nlp_configuration = {
|
69 |
-
"nlp_engine_name": "spacy",
|
70 |
-
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
71 |
-
}
|
72 |
-
|
73 |
-
registry.add_recognizer(transformers_recognizer)
|
74 |
|
75 |
-
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
|
78 |
return analyzer
|
79 |
|
@@ -85,17 +91,36 @@ def anonymizer_engine():
|
|
85 |
|
86 |
|
87 |
@st.cache_data
|
88 |
-
def get_supported_entities(
|
|
|
|
|
89 |
"""Return supported entities from the Analyzer Engine."""
|
90 |
-
return analyzer_engine(
|
|
|
|
|
91 |
|
92 |
|
93 |
@st.cache_data
|
94 |
-
def analyze(
|
|
|
|
|
95 |
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
96 |
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
97 |
kwargs["entities"] = None
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
def anonymize(
|
@@ -184,20 +209,52 @@ def annotate(text: str, analyze_results: List[RecognizerResult]):
|
|
184 |
def create_fake_data(
|
185 |
text: str,
|
186 |
analyze_results: List[RecognizerResult],
|
187 |
-
|
188 |
-
openai_model_name: str,
|
189 |
):
|
190 |
"""Creates a synthetic version of the text using OpenAI APIs"""
|
191 |
-
if not openai_key:
|
192 |
return "Please provide your OpenAI key"
|
193 |
results = anonymize(text=text, operator="replace", analyze_results=analyze_results)
|
194 |
-
|
195 |
prompt = create_prompt(results.text)
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
197 |
return fake
|
198 |
|
199 |
|
200 |
@st.cache_data
|
201 |
-
def call_openai_api(
|
202 |
-
|
|
|
|
|
|
|
|
|
203 |
return fake_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
Helper methods for the Presidio Streamlit app
|
3 |
"""
|
4 |
+
from typing import List, Optional, Tuple
|
5 |
+
import logging
|
|
|
6 |
import streamlit as st
|
7 |
+
from presidio_analyzer import (
|
8 |
+
AnalyzerEngine,
|
9 |
+
RecognizerResult,
|
10 |
+
RecognizerRegistry,
|
11 |
+
PatternRecognizer,
|
12 |
+
Pattern,
|
13 |
+
)
|
14 |
+
from presidio_analyzer.nlp_engine import NlpEngine
|
15 |
from presidio_anonymizer import AnonymizerEngine
|
16 |
from presidio_anonymizer.entities import OperatorConfig
|
17 |
|
|
|
18 |
from openai_fake_data_generator import (
|
19 |
+
set_openai_params,
|
20 |
call_completion_model,
|
21 |
create_prompt,
|
22 |
+
OpenAIParams,
|
23 |
)
|
24 |
+
from presidio_nlp_engine_config import (
|
25 |
+
create_nlp_engine_with_spacy,
|
26 |
+
create_nlp_engine_with_flair,
|
27 |
+
create_nlp_engine_with_transformers,
|
28 |
+
create_nlp_engine_with_azure_text_analytics,
|
29 |
)
|
30 |
|
31 |
+
logger = logging.getLogger("presidio-streamlit")
|
32 |
|
|
|
|
|
|
|
33 |
|
34 |
+
@st.cache_resource
|
35 |
+
def nlp_engine_and_registry(
|
36 |
+
model_family: str,
|
37 |
+
model_path: str,
|
38 |
+
ta_key: Optional[str] = None,
|
39 |
+
ta_endpoint: Optional[str] = None,
|
40 |
+
) -> Tuple[NlpEngine, RecognizerRegistry]:
|
41 |
+
"""Create the NLP Engine instance based on the requested model.
|
42 |
+
:param model_family: Which model package to use for NER.
|
43 |
+
:param model_path: Which model to use for NER. E.g.,
|
44 |
"StanfordAIMI/stanford-deidentifier-base",
|
45 |
"obi/deid_roberta_i2b2",
|
46 |
"en_core_web_lg"
|
47 |
+
:param ta_key: Key to the Text Analytics endpoint (only if model_path = "Azure Text Analytics")
|
48 |
+
:param ta_endpoint: Endpoint of the Text Analytics instance (only if model_path = "Azure Text Analytics")
|
49 |
"""
|
50 |
|
|
|
|
|
|
|
51 |
# Set up NLP Engine according to the model of choice
|
52 |
+
if "spaCy" in model_family:
|
53 |
+
return create_nlp_engine_with_spacy(model_path)
|
54 |
+
elif "flair" in model_family:
|
55 |
+
return create_nlp_engine_with_flair(model_path)
|
56 |
+
elif "HuggingFace" in model_family:
|
57 |
+
return create_nlp_engine_with_transformers(model_path)
|
58 |
+
elif "Azure Text Analytics" in model_family:
|
59 |
+
return create_nlp_engine_with_azure_text_analytics(ta_key, ta_endpoint)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
else:
|
61 |
+
raise ValueError(f"Model family {model_family} not supported")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
63 |
|
64 |
+
@st.cache_resource
|
65 |
+
def analyzer_engine(
|
66 |
+
model_family: str,
|
67 |
+
model_path: str,
|
68 |
+
ta_key: Optional[str] = None,
|
69 |
+
ta_endpoint: Optional[str] = None,
|
70 |
+
) -> AnalyzerEngine:
|
71 |
+
"""Create the NLP Engine instance based on the requested model.
|
72 |
+
:param model_family: Which model package to use for NER.
|
73 |
+
:param model_path: Which model to use for NER:
|
74 |
+
"StanfordAIMI/stanford-deidentifier-base",
|
75 |
+
"obi/deid_roberta_i2b2",
|
76 |
+
"en_core_web_lg"
|
77 |
+
:param ta_key: Key to the Text Analytics endpoint (only if model_path = "Azure Text Analytics")
|
78 |
+
:param ta_endpoint: Endpoint of the Text Analytics instance (only if model_path = "Azure Text Analytics")
|
79 |
+
"""
|
80 |
+
nlp_engine, registry = nlp_engine_and_registry(
|
81 |
+
model_family, model_path, ta_key, ta_endpoint
|
82 |
+
)
|
83 |
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
|
84 |
return analyzer
|
85 |
|
|
|
91 |
|
92 |
|
93 |
@st.cache_data
|
94 |
+
def get_supported_entities(
|
95 |
+
model_family: str, model_path: str, ta_key: str, ta_endpoint: str
|
96 |
+
):
|
97 |
"""Return supported entities from the Analyzer Engine."""
|
98 |
+
return analyzer_engine(
|
99 |
+
model_family, model_path, ta_key, ta_endpoint
|
100 |
+
).get_supported_entities() + ["GENERIC_PII"]
|
101 |
|
102 |
|
103 |
@st.cache_data
|
104 |
+
def analyze(
|
105 |
+
model_family: str, model_path: str, ta_key: str, ta_endpoint: str, **kwargs
|
106 |
+
):
|
107 |
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
108 |
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
109 |
kwargs["entities"] = None
|
110 |
+
|
111 |
+
if "deny_list" in kwargs and kwargs["deny_list"] is not None:
|
112 |
+
ad_hoc_recognizer = create_ad_hoc_deny_list_recognizer(kwargs["deny_list"])
|
113 |
+
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
|
114 |
+
del kwargs["deny_list"]
|
115 |
+
|
116 |
+
if "regex_params" in kwargs and len(kwargs["regex_params"]) > 0:
|
117 |
+
ad_hoc_recognizer = create_ad_hoc_regex_recognizer(*kwargs["regex_params"])
|
118 |
+
kwargs["ad_hoc_recognizers"] = [ad_hoc_recognizer] if ad_hoc_recognizer else []
|
119 |
+
del kwargs["regex_params"]
|
120 |
+
|
121 |
+
return analyzer_engine(model_family, model_path, ta_key, ta_endpoint).analyze(
|
122 |
+
**kwargs
|
123 |
+
)
|
124 |
|
125 |
|
126 |
def anonymize(
|
|
|
209 |
def create_fake_data(
|
210 |
text: str,
|
211 |
analyze_results: List[RecognizerResult],
|
212 |
+
openai_params: OpenAIParams,
|
|
|
213 |
):
|
214 |
"""Creates a synthetic version of the text using OpenAI APIs"""
|
215 |
+
if not openai_params.openai_key:
|
216 |
return "Please provide your OpenAI key"
|
217 |
results = anonymize(text=text, operator="replace", analyze_results=analyze_results)
|
218 |
+
set_openai_params(openai_params)
|
219 |
prompt = create_prompt(results.text)
|
220 |
+
print(f"Prompt: {prompt}")
|
221 |
+
fake = call_openai_api(
|
222 |
+
prompt=prompt,
|
223 |
+
openai_model_name=openai_params.model,
|
224 |
+
openai_deployment_name=openai_params.deployment_name,
|
225 |
+
)
|
226 |
return fake
|
227 |
|
228 |
|
229 |
@st.cache_data
|
230 |
+
def call_openai_api(
|
231 |
+
prompt: str, openai_model_name: str, openai_deployment_name: Optional[str] = None
|
232 |
+
) -> str:
|
233 |
+
fake_data = call_completion_model(
|
234 |
+
prompt, model=openai_model_name, deployment_id=openai_deployment_name
|
235 |
+
)
|
236 |
return fake_data
|
237 |
+
|
238 |
+
|
239 |
+
def create_ad_hoc_deny_list_recognizer(
|
240 |
+
deny_list=Optional[List[str]],
|
241 |
+
) -> Optional[PatternRecognizer]:
|
242 |
+
if not deny_list:
|
243 |
+
return None
|
244 |
+
|
245 |
+
deny_list_recognizer = PatternRecognizer(
|
246 |
+
supported_entity="GENERIC_PII", deny_list=deny_list
|
247 |
+
)
|
248 |
+
return deny_list_recognizer
|
249 |
+
|
250 |
+
|
251 |
+
def create_ad_hoc_regex_recognizer(
|
252 |
+
regex: str, entity_type: str, score: float, context: Optional[List[str]] = None
|
253 |
+
) -> Optional[PatternRecognizer]:
|
254 |
+
if not regex:
|
255 |
+
return None
|
256 |
+
pattern = Pattern(name="Regex pattern", regex=regex, score=score)
|
257 |
+
regex_recognizer = PatternRecognizer(
|
258 |
+
supported_entity=entity_type, patterns=[pattern], context=context
|
259 |
+
)
|
260 |
+
return regex_recognizer
|
presidio_nlp_engine_config.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
import logging
|
3 |
+
import spacy
|
4 |
+
from presidio_analyzer import RecognizerRegistry
|
5 |
+
from presidio_analyzer.nlp_engine import NlpEngine, NlpEngineProvider
|
6 |
+
|
7 |
+
logger = logging.getLogger("presidio-streamlit")
|
8 |
+
|
9 |
+
|
10 |
+
def create_nlp_engine_with_spacy(
|
11 |
+
model_path: str,
|
12 |
+
) -> Tuple[NlpEngine, RecognizerRegistry]:
|
13 |
+
"""
|
14 |
+
Instantiate an NlpEngine with a spaCy model
|
15 |
+
:param model_path: spaCy model path.
|
16 |
+
"""
|
17 |
+
registry = RecognizerRegistry()
|
18 |
+
registry.load_predefined_recognizers()
|
19 |
+
|
20 |
+
if not spacy.util.is_package(model_path):
|
21 |
+
spacy.cli.download(model_path)
|
22 |
+
|
23 |
+
nlp_configuration = {
|
24 |
+
"nlp_engine_name": "spacy",
|
25 |
+
"models": [{"lang_code": "en", "model_name": model_path}],
|
26 |
+
}
|
27 |
+
|
28 |
+
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
29 |
+
|
30 |
+
return nlp_engine, registry
|
31 |
+
|
32 |
+
|
33 |
+
def create_nlp_engine_with_transformers(
|
34 |
+
model_path: str,
|
35 |
+
) -> Tuple[NlpEngine, RecognizerRegistry]:
|
36 |
+
"""
|
37 |
+
Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model.
|
38 |
+
The TransformersRecognizer would return results from Transformers models, the spaCy model
|
39 |
+
would return NlpArtifacts such as POS and lemmas.
|
40 |
+
:param model_path: HuggingFace model path.
|
41 |
+
"""
|
42 |
+
|
43 |
+
from transformers_rec import (
|
44 |
+
STANFORD_COFIGURATION,
|
45 |
+
BERT_DEID_CONFIGURATION,
|
46 |
+
TransformersRecognizer,
|
47 |
+
)
|
48 |
+
|
49 |
+
registry = RecognizerRegistry()
|
50 |
+
registry.load_predefined_recognizers()
|
51 |
+
|
52 |
+
if not spacy.util.is_package("en_core_web_sm"):
|
53 |
+
spacy.cli.download("en_core_web_sm")
|
54 |
+
# Using a small spaCy model + a HF NER model
|
55 |
+
transformers_recognizer = TransformersRecognizer(model_path=model_path)
|
56 |
+
|
57 |
+
if model_path == "StanfordAIMI/stanford-deidentifier-base":
|
58 |
+
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
|
59 |
+
elif model_path == "obi/deid_roberta_i2b2":
|
60 |
+
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
|
61 |
+
else:
|
62 |
+
print(f"Warning: Model has no configuration, loading default.")
|
63 |
+
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
|
64 |
+
|
65 |
+
# Use small spaCy model, no need for both spacy and HF models
|
66 |
+
# The transformers model is used here as a recognizer, not as an NlpEngine
|
67 |
+
nlp_configuration = {
|
68 |
+
"nlp_engine_name": "spacy",
|
69 |
+
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
70 |
+
}
|
71 |
+
|
72 |
+
registry.add_recognizer(transformers_recognizer)
|
73 |
+
registry.remove_recognizer("SpacyRecognizer")
|
74 |
+
|
75 |
+
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
76 |
+
|
77 |
+
return nlp_engine, registry
|
78 |
+
|
79 |
+
|
80 |
+
def create_nlp_engine_with_flair(
|
81 |
+
model_path: str,
|
82 |
+
) -> Tuple[NlpEngine, RecognizerRegistry]:
|
83 |
+
"""
|
84 |
+
Instantiate an NlpEngine with a FlairRecognizer and a small spaCy model.
|
85 |
+
The FlairRecognizer would return results from Flair models, the spaCy model
|
86 |
+
would return NlpArtifacts such as POS and lemmas.
|
87 |
+
:param model_path: Flair model path.
|
88 |
+
"""
|
89 |
+
from flair_recognizer import FlairRecognizer
|
90 |
+
|
91 |
+
registry = RecognizerRegistry()
|
92 |
+
registry.load_predefined_recognizers()
|
93 |
+
|
94 |
+
if not spacy.util.is_package("en_core_web_sm"):
|
95 |
+
spacy.cli.download("en_core_web_sm")
|
96 |
+
# Using a small spaCy model + a Flair NER model
|
97 |
+
flair_recognizer = FlairRecognizer(model_path=model_path)
|
98 |
+
nlp_configuration = {
|
99 |
+
"nlp_engine_name": "spacy",
|
100 |
+
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
101 |
+
}
|
102 |
+
registry.add_recognizer(flair_recognizer)
|
103 |
+
registry.remove_recognizer("SpacyRecognizer")
|
104 |
+
|
105 |
+
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
106 |
+
|
107 |
+
return nlp_engine, registry
|
108 |
+
|
109 |
+
|
110 |
+
def create_nlp_engine_with_azure_text_analytics(ta_key: str, ta_endpoint: str):
|
111 |
+
"""
|
112 |
+
Instantiate an NlpEngine with a TextAnalyticsWrapper and a small spaCy model.
|
113 |
+
The TextAnalyticsWrapper would return results from calling Azure Text Analytics PII, the spaCy model
|
114 |
+
would return NlpArtifacts such as POS and lemmas.
|
115 |
+
:param ta_key: Azure Text Analytics key.
|
116 |
+
:param ta_endpoint: Azure Text Analytics endpoint.
|
117 |
+
"""
|
118 |
+
from text_analytics_wrapper import TextAnalyticsWrapper
|
119 |
+
|
120 |
+
if not ta_key or not ta_endpoint:
|
121 |
+
raise RuntimeError("Please fill in the Text Analytics endpoint details")
|
122 |
+
|
123 |
+
registry = RecognizerRegistry()
|
124 |
+
registry.load_predefined_recognizers()
|
125 |
+
|
126 |
+
ta_recognizer = TextAnalyticsWrapper(ta_endpoint=ta_endpoint, ta_key=ta_key)
|
127 |
+
nlp_configuration = {
|
128 |
+
"nlp_engine_name": "spacy",
|
129 |
+
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
|
130 |
+
}
|
131 |
+
|
132 |
+
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
|
133 |
+
|
134 |
+
registry.add_recognizer(ta_recognizer)
|
135 |
+
registry.remove_recognizer("SpacyRecognizer")
|
136 |
+
|
137 |
+
return nlp_engine, registry
|
presidio_streamlit.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
"""Streamlit app for Presidio."""
|
|
|
2 |
import os
|
3 |
-
|
4 |
|
|
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
import streamlit.components.v1 as components
|
8 |
-
|
9 |
from annotated_text import annotated_text
|
|
|
10 |
|
|
|
11 |
from presidio_helpers import (
|
12 |
get_supported_entities,
|
13 |
analyze,
|
@@ -17,45 +20,86 @@ from presidio_helpers import (
|
|
17 |
analyzer_engine,
|
18 |
)
|
19 |
|
20 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Sidebar
|
23 |
st.sidebar.header(
|
24 |
"""
|
25 |
-
PII De-Identification with Microsoft Presidio
|
26 |
"""
|
27 |
)
|
28 |
|
29 |
-
st.sidebar.info(
|
30 |
-
"Presidio is an open source customizable framework for PII detection and de-identification\n"
|
31 |
-
"[Code](https://aka.ms/presidio) | "
|
32 |
-
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
|
33 |
-
"[Installation](https://microsoft.github.io/presidio/installation/) | "
|
34 |
-
"[FAQ](https://microsoft.github.io/presidio/faq/)",
|
35 |
-
icon="ℹ️",
|
36 |
-
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
st_model = st.sidebar.selectbox(
|
45 |
-
"NER model
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
"flair/ner-english-large",
|
50 |
-
"en_core_web_lg",
|
51 |
-
],
|
52 |
-
index=1,
|
53 |
-
help="""
|
54 |
-
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
|
55 |
-
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair.
|
56 |
-
""",
|
57 |
)
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
st_operator = st.sidebar.selectbox(
|
61 |
"De-identification approach",
|
@@ -75,8 +119,11 @@ st_operator = st.sidebar.selectbox(
|
|
75 |
st_mask_char = "*"
|
76 |
st_number_of_chars = 15
|
77 |
st_encrypt_key = "WmZq4t7w!z%C&F)J"
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
if st_operator == "mask":
|
81 |
st_number_of_chars = st.sidebar.number_input(
|
82 |
"number of chars", value=st_number_of_chars, min_value=0, max_value=100
|
@@ -87,6 +134,22 @@ if st_operator == "mask":
|
|
87 |
elif st_operator == "encrypt":
|
88 |
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
|
89 |
elif st_operator == "synthesize":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
st_openai_key = st.sidebar.text_input(
|
91 |
"OPENAI_KEY",
|
92 |
value=os.getenv("OPENAI_KEY", default=""),
|
@@ -95,36 +158,87 @@ elif st_operator == "synthesize":
|
|
95 |
)
|
96 |
st_openai_model = st.sidebar.text_input(
|
97 |
"OpenAI model for text synthesis",
|
98 |
-
value=
|
99 |
help="See more here: https://platform.openai.com/docs/models/",
|
100 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
st_threshold = st.sidebar.slider(
|
102 |
label="Acceptance threshold",
|
103 |
min_value=0.0,
|
104 |
max_value=1.0,
|
105 |
value=0.35,
|
106 |
-
help="Define the threshold for accepting a detection as PII.",
|
107 |
)
|
108 |
|
109 |
st_return_decision_process = st.sidebar.checkbox(
|
110 |
"Add analysis explanations to findings",
|
111 |
value=False,
|
112 |
help="Add the decision process to the output table. "
|
113 |
-
|
114 |
)
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
help="Limit the list of PII entities detected. "
|
121 |
-
"This list is dynamic and based on the NER model and registered recognizers. "
|
122 |
-
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
|
123 |
)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
# Main panel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
127 |
-
|
128 |
analyzer_load_state.empty()
|
129 |
|
130 |
# Read default text
|
@@ -135,92 +249,103 @@ with open("demo_text.txt") as f:
|
|
135 |
col1, col2 = st.columns(2)
|
136 |
|
137 |
# Before:
|
138 |
-
col1.subheader("Input
|
139 |
st_text = col1.text_area(
|
140 |
-
label="Enter text",
|
141 |
-
value="".join(demo_text),
|
142 |
-
height=400,
|
143 |
)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
if st_operator not in ("highlight", "synthesize"):
|
156 |
-
with col2:
|
157 |
-
st.subheader(f"Output")
|
158 |
-
st_anonymize_results = anonymize(
|
159 |
-
text=st_text,
|
160 |
-
operator=st_operator,
|
161 |
-
mask_char=st_mask_char,
|
162 |
-
number_of_chars=st_number_of_chars,
|
163 |
-
encrypt_key=st_encrypt_key,
|
164 |
-
analyze_results=st_analyze_results,
|
165 |
-
)
|
166 |
-
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
|
167 |
-
elif st_operator == "synthesize":
|
168 |
-
with col2:
|
169 |
-
st.subheader(f"OpenAI Generated output")
|
170 |
-
fake_data = create_fake_data(
|
171 |
-
st_text,
|
172 |
-
st_analyze_results,
|
173 |
-
openai_key=st_openai_key,
|
174 |
-
openai_model_name=st_openai_model,
|
175 |
-
)
|
176 |
-
st.text_area(label="Synthetic data", value=fake_data, height=400)
|
177 |
-
else:
|
178 |
-
st.subheader("Highlighted")
|
179 |
-
annotated_tokens = annotate(
|
180 |
-
text=st_text,
|
181 |
-
analyze_results=st_analyze_results
|
182 |
)
|
183 |
-
# annotated_tokens
|
184 |
-
annotated_text(*annotated_tokens)
|
185 |
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
{
|
206 |
-
"entity_type": "Entity type",
|
207 |
-
"text": "Text",
|
208 |
-
"start": "Start",
|
209 |
-
"end": "End",
|
210 |
-
"score": "Confidence",
|
211 |
-
},
|
212 |
-
axis=1,
|
213 |
-
)
|
214 |
-
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
|
215 |
-
if st_return_decision_process:
|
216 |
-
analysis_explanation_df = pd.DataFrame.from_records(
|
217 |
-
[r.analysis_explanation.to_dict() for r in st_analyze_results]
|
218 |
)
|
219 |
-
df_subset =
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
223 |
|
|
|
|
|
|
|
|
|
224 |
|
225 |
components.html(
|
226 |
"""
|
|
|
1 |
"""Streamlit app for Presidio."""
|
2 |
+
import logging
|
3 |
import os
|
4 |
+
import traceback
|
5 |
|
6 |
+
import dotenv
|
7 |
import pandas as pd
|
8 |
import streamlit as st
|
9 |
import streamlit.components.v1 as components
|
|
|
10 |
from annotated_text import annotated_text
|
11 |
+
from streamlit_tags import st_tags
|
12 |
|
13 |
+
from openai_fake_data_generator import OpenAIParams
|
14 |
from presidio_helpers import (
|
15 |
get_supported_entities,
|
16 |
analyze,
|
|
|
20 |
analyzer_engine,
|
21 |
)
|
22 |
|
23 |
+
st.set_page_config(
|
24 |
+
page_title="Presidio demo",
|
25 |
+
layout="wide",
|
26 |
+
initial_sidebar_state="expanded",
|
27 |
+
menu_items={
|
28 |
+
"About": "https://microsoft.github.io/presidio/",
|
29 |
+
},
|
30 |
+
)
|
31 |
+
|
32 |
+
dotenv.load_dotenv()
|
33 |
+
logger = logging.getLogger("presidio-streamlit")
|
34 |
+
|
35 |
+
|
36 |
+
allow_other_models = os.getenv("ALLOW_OTHER_MODELS", False)
|
37 |
+
|
38 |
|
39 |
# Sidebar
|
40 |
st.sidebar.header(
|
41 |
"""
|
42 |
+
PII De-Identification with [Microsoft Presidio](https://microsoft.github.io/presidio/)
|
43 |
"""
|
44 |
)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
model_help_text = """
|
48 |
+
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
|
49 |
+
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair,
|
50 |
+
as well as service such as Azure Text Analytics PII.
|
51 |
+
"""
|
52 |
+
st_ta_key = st_ta_endpoint = ""
|
53 |
|
54 |
+
model_list = [
|
55 |
+
"spaCy/en_core_web_lg",
|
56 |
+
"flair/ner-english-large",
|
57 |
+
"HuggingFace/obi/deid_roberta_i2b2",
|
58 |
+
"HuggingFace/StanfordAIMI/stanford-deidentifier-base",
|
59 |
+
"Azure Text Analytics PII",
|
60 |
+
"Other",
|
61 |
+
]
|
62 |
+
if not allow_other_models:
|
63 |
+
model_list.pop()
|
64 |
+
# Select model
|
65 |
st_model = st.sidebar.selectbox(
|
66 |
+
"NER model package",
|
67 |
+
model_list,
|
68 |
+
index=2,
|
69 |
+
help=model_help_text,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
+
|
72 |
+
# Extract model package.
|
73 |
+
st_model_package = st_model.split("/")[0]
|
74 |
+
|
75 |
+
# Remove package prefix (if needed)
|
76 |
+
st_model = (
|
77 |
+
st_model
|
78 |
+
if st_model_package not in ("spaCy", "HuggingFace")
|
79 |
+
else "/".join(st_model.split("/")[1:])
|
80 |
+
)
|
81 |
+
|
82 |
+
if st_model == "Other":
|
83 |
+
st_model_package = st.sidebar.selectbox(
|
84 |
+
"NER model OSS package", options=["spaCy", "Flair", "HuggingFace"]
|
85 |
+
)
|
86 |
+
st_model = st.sidebar.text_input(f"NER model name", value="")
|
87 |
+
|
88 |
+
if st_model == "Azure Text Analytics PII":
|
89 |
+
st_ta_key = st.sidebar.text_input(
|
90 |
+
f"Text Analytics key", value=os.getenv("TA_KEY", ""), type="password"
|
91 |
+
)
|
92 |
+
st_ta_endpoint = st.sidebar.text_input(
|
93 |
+
f"Text Analytics endpoint",
|
94 |
+
value=os.getenv("TA_ENDPOINT", default=""),
|
95 |
+
help="For more info: https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/personally-identifiable-information/overview", # noqa: E501
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
st.sidebar.warning("Note: Models might take some time to download. ")
|
100 |
+
|
101 |
+
analyzer_params = (st_model_package, st_model, st_ta_key, st_ta_endpoint)
|
102 |
+
logger.debug(f"analyzer_params: {analyzer_params}")
|
103 |
|
104 |
st_operator = st.sidebar.selectbox(
|
105 |
"De-identification approach",
|
|
|
119 |
st_mask_char = "*"
|
120 |
st_number_of_chars = 15
|
121 |
st_encrypt_key = "WmZq4t7w!z%C&F)J"
|
122 |
+
|
123 |
+
open_ai_params = None
|
124 |
+
|
125 |
+
logger.debug(f"st_operator: {st_operator}")
|
126 |
+
|
127 |
if st_operator == "mask":
|
128 |
st_number_of_chars = st.sidebar.number_input(
|
129 |
"number of chars", value=st_number_of_chars, min_value=0, max_value=100
|
|
|
134 |
elif st_operator == "encrypt":
|
135 |
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
|
136 |
elif st_operator == "synthesize":
|
137 |
+
if os.getenv("OPENAI_TYPE", default="openai") == "Azure":
|
138 |
+
openai_api_type = "azure"
|
139 |
+
st_openai_api_base = st.sidebar.text_input(
|
140 |
+
"Azure OpenAI base URL",
|
141 |
+
value=os.getenv("AZURE_OPENAI_ENDPOINT", default=""),
|
142 |
+
)
|
143 |
+
st_deployment_name = st.sidebar.text_input(
|
144 |
+
"Deployment name", value=os.getenv("AZURE_OPENAI_DEPLOYMENT", default="")
|
145 |
+
)
|
146 |
+
st_openai_version = st.sidebar.text_input(
|
147 |
+
"OpenAI version",
|
148 |
+
value=os.getenv("OPENAI_API_VERSION", default="2023-05-15"),
|
149 |
+
)
|
150 |
+
else:
|
151 |
+
st_openai_version = openai_api_type = st_openai_api_base = None
|
152 |
+
st_deployment_name = ""
|
153 |
st_openai_key = st.sidebar.text_input(
|
154 |
"OPENAI_KEY",
|
155 |
value=os.getenv("OPENAI_KEY", default=""),
|
|
|
158 |
)
|
159 |
st_openai_model = st.sidebar.text_input(
|
160 |
"OpenAI model for text synthesis",
|
161 |
+
value=os.getenv("OPENAI_MODEL", default="text-davinci-003"),
|
162 |
help="See more here: https://platform.openai.com/docs/models/",
|
163 |
)
|
164 |
+
|
165 |
+
open_ai_params = OpenAIParams(
|
166 |
+
openai_key=st_openai_key,
|
167 |
+
model=st_openai_model,
|
168 |
+
api_base=st_openai_api_base,
|
169 |
+
deployment_name=st_deployment_name,
|
170 |
+
api_version=st_openai_version,
|
171 |
+
api_type=openai_api_type,
|
172 |
+
)
|
173 |
+
|
174 |
st_threshold = st.sidebar.slider(
|
175 |
label="Acceptance threshold",
|
176 |
min_value=0.0,
|
177 |
max_value=1.0,
|
178 |
value=0.35,
|
179 |
+
help="Define the threshold for accepting a detection as PII. See more here: ",
|
180 |
)
|
181 |
|
182 |
st_return_decision_process = st.sidebar.checkbox(
|
183 |
"Add analysis explanations to findings",
|
184 |
value=False,
|
185 |
help="Add the decision process to the output table. "
|
186 |
+
"More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/",
|
187 |
)
|
188 |
|
189 |
+
# Allow and deny lists
|
190 |
+
st_deny_allow_expander = st.sidebar.expander(
|
191 |
+
"Allowlists and denylists",
|
192 |
+
expanded=False,
|
|
|
|
|
|
|
193 |
)
|
194 |
|
195 |
+
with st_deny_allow_expander:
|
196 |
+
st_allow_list = st_tags(
|
197 |
+
label="Add words to the allowlist", text="Enter word and press enter."
|
198 |
+
)
|
199 |
+
st.caption(
|
200 |
+
"Allowlists contain words that are not considered PII, but are detected as such."
|
201 |
+
)
|
202 |
+
|
203 |
+
st_deny_list = st_tags(
|
204 |
+
label="Add words to the denylist", text="Enter word and press enter."
|
205 |
+
)
|
206 |
+
st.caption(
|
207 |
+
"Denylists contain words that are considered PII, but are not detected as such."
|
208 |
+
)
|
209 |
# Main panel
|
210 |
+
|
211 |
+
with st.expander("About this demo", expanded=False):
|
212 |
+
st.info(
|
213 |
+
"""Presidio is an open source customizable framework for PII detection and de-identification.
|
214 |
+
\n\n[Code](https://aka.ms/presidio) |
|
215 |
+
[Tutorial](https://microsoft.github.io/presidio/tutorial/) |
|
216 |
+
[Installation](https://microsoft.github.io/presidio/installation/) |
|
217 |
+
[FAQ](https://microsoft.github.io/presidio/faq/) |"""
|
218 |
+
)
|
219 |
+
|
220 |
+
st.info(
|
221 |
+
"""
|
222 |
+
Use this demo to:
|
223 |
+
- Experiment with different off-the-shelf models and NLP packages.
|
224 |
+
- Explore the different de-identification options, including redaction, masking, encryption and more.
|
225 |
+
- Generate synthetic text with Microsoft Presidio and OpenAI.
|
226 |
+
- Configure allow and deny lists.
|
227 |
+
|
228 |
+
This demo website shows some of Presidio's capabilities.
|
229 |
+
[Visit our website](https://microsoft.github.io/presidio) for more info,
|
230 |
+
samples and deployment options.
|
231 |
+
"""
|
232 |
+
)
|
233 |
+
|
234 |
+
st.markdown(
|
235 |
+
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" # noqa
|
236 |
+
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
|
237 |
+
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
|
238 |
+
)
|
239 |
+
|
240 |
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
241 |
+
|
242 |
analyzer_load_state.empty()
|
243 |
|
244 |
# Read default text
|
|
|
249 |
col1, col2 = st.columns(2)
|
250 |
|
251 |
# Before:
|
252 |
+
col1.subheader("Input")
|
253 |
st_text = col1.text_area(
|
254 |
+
label="Enter text", value="".join(demo_text), height=400, key="text_input"
|
|
|
|
|
255 |
)
|
256 |
|
257 |
+
try:
|
258 |
+
# Choose entities
|
259 |
+
st_entities_expander = st.sidebar.expander("Choose entities to look for")
|
260 |
+
st_entities = st_entities_expander.multiselect(
|
261 |
+
label="Which entities to look for?",
|
262 |
+
options=get_supported_entities(*analyzer_params),
|
263 |
+
default=list(get_supported_entities(*analyzer_params)),
|
264 |
+
help="Limit the list of PII entities detected. "
|
265 |
+
"This list is dynamic and based on the NER model and registered recognizers. "
|
266 |
+
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
)
|
|
|
|
|
268 |
|
269 |
+
# Before
|
270 |
+
analyzer_load_state = st.info("Starting Presidio analyzer...")
|
271 |
+
analyzer = analyzer_engine(*analyzer_params)
|
272 |
+
analyzer_load_state.empty()
|
273 |
|
274 |
+
st_analyze_results = analyze(
|
275 |
+
*analyzer_params,
|
276 |
+
text=st_text,
|
277 |
+
entities=st_entities,
|
278 |
+
language="en",
|
279 |
+
score_threshold=st_threshold,
|
280 |
+
return_decision_process=st_return_decision_process,
|
281 |
+
allow_list=st_allow_list,
|
282 |
+
deny_list=st_deny_list,
|
283 |
+
)
|
284 |
|
285 |
+
# After
|
286 |
+
if st_operator not in ("highlight", "synthesize"):
|
287 |
+
with col2:
|
288 |
+
st.subheader(f"Output")
|
289 |
+
st_anonymize_results = anonymize(
|
290 |
+
text=st_text,
|
291 |
+
operator=st_operator,
|
292 |
+
mask_char=st_mask_char,
|
293 |
+
number_of_chars=st_number_of_chars,
|
294 |
+
encrypt_key=st_encrypt_key,
|
295 |
+
analyze_results=st_analyze_results,
|
296 |
+
)
|
297 |
+
st.text_area(
|
298 |
+
label="De-identified", value=st_anonymize_results.text, height=400
|
299 |
+
)
|
300 |
+
elif st_operator == "synthesize":
|
301 |
+
with col2:
|
302 |
+
st.subheader(f"OpenAI Generated output")
|
303 |
+
fake_data = create_fake_data(
|
304 |
+
st_text,
|
305 |
+
st_analyze_results,
|
306 |
+
open_ai_params,
|
307 |
+
)
|
308 |
+
st.text_area(label="Synthetic data", value=fake_data, height=400)
|
309 |
+
else:
|
310 |
+
st.subheader("Highlighted")
|
311 |
+
annotated_tokens = annotate(text=st_text, analyze_results=st_analyze_results)
|
312 |
+
# annotated_tokens
|
313 |
+
annotated_text(*annotated_tokens)
|
314 |
|
315 |
+
# table result
|
316 |
+
st.subheader(
|
317 |
+
"Findings"
|
318 |
+
if not st_return_decision_process
|
319 |
+
else "Findings with decision factors"
|
320 |
+
)
|
321 |
+
if st_analyze_results:
|
322 |
+
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
|
323 |
+
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results]
|
324 |
|
325 |
+
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
|
326 |
+
{
|
327 |
+
"entity_type": "Entity type",
|
328 |
+
"text": "Text",
|
329 |
+
"start": "Start",
|
330 |
+
"end": "End",
|
331 |
+
"score": "Confidence",
|
332 |
+
},
|
333 |
+
axis=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
)
|
335 |
+
df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results]
|
336 |
+
if st_return_decision_process:
|
337 |
+
analysis_explanation_df = pd.DataFrame.from_records(
|
338 |
+
[r.analysis_explanation.to_dict() for r in st_analyze_results]
|
339 |
+
)
|
340 |
+
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
|
341 |
+
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
|
342 |
+
else:
|
343 |
+
st.text("No findings")
|
344 |
|
345 |
+
except Exception as e:
|
346 |
+
print(e)
|
347 |
+
traceback.print_exc()
|
348 |
+
st.error(e)
|
349 |
|
350 |
components.html(
|
351 |
"""
|
requirements.txt
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
presidio-analyzer
|
2 |
presidio-anonymizer
|
3 |
streamlit
|
|
|
4 |
pandas
|
|
|
5 |
st-annotated-text
|
6 |
torch
|
7 |
transformers
|
8 |
flair
|
9 |
-
openai
|
|
|
|
|
|
1 |
presidio-analyzer
|
2 |
presidio-anonymizer
|
3 |
streamlit
|
4 |
+
streamlit-tags
|
5 |
pandas
|
6 |
+
python-dotenv
|
7 |
st-annotated-text
|
8 |
torch
|
9 |
transformers
|
10 |
flair
|
11 |
+
openai
|
12 |
+
spacy
|
13 |
+
azure-ai-textanalytics
|
text_analytics_wrapper.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Optional
|
3 |
+
import logging
|
4 |
+
import dotenv
|
5 |
+
from azure.ai.textanalytics import TextAnalyticsClient
|
6 |
+
from azure.core.credentials import AzureKeyCredential
|
7 |
+
|
8 |
+
from presidio_analyzer import EntityRecognizer, RecognizerResult, AnalysisExplanation
|
9 |
+
from presidio_analyzer.nlp_engine import NlpArtifacts
|
10 |
+
|
11 |
+
logger = logging.getLogger("presidio-streamlit")
|
12 |
+
|
13 |
+
class TextAnalyticsWrapper(EntityRecognizer):
|
14 |
+
from azure.ai.textanalytics._models import PiiEntityCategory
|
15 |
+
TA_SUPPORTED_ENTITIES = [r.value for r in PiiEntityCategory]
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
supported_entities: Optional[List[str]] = None,
|
20 |
+
supported_language: str = "en",
|
21 |
+
ta_client: Optional[TextAnalyticsClient] = None,
|
22 |
+
ta_key: Optional[str] = None,
|
23 |
+
ta_endpoint: Optional[str] = None,
|
24 |
+
):
|
25 |
+
"""
|
26 |
+
Wrapper for the Azure Text Analytics client
|
27 |
+
:param ta_client: object of type TextAnalyticsClient
|
28 |
+
:param ta_key: Azure cognitive Services for Language key
|
29 |
+
:param ta_endpoint: Azure cognitive Services for Language endpoint
|
30 |
+
"""
|
31 |
+
|
32 |
+
if not supported_entities:
|
33 |
+
supported_entities = self.TA_SUPPORTED_ENTITIES
|
34 |
+
|
35 |
+
super().__init__(
|
36 |
+
supported_entities=supported_entities,
|
37 |
+
supported_language=supported_language,
|
38 |
+
name="Azure Text Analytics PII",
|
39 |
+
)
|
40 |
+
|
41 |
+
self.ta_key = ta_key
|
42 |
+
self.ta_endpoint = ta_endpoint
|
43 |
+
|
44 |
+
if not ta_client:
|
45 |
+
ta_client = self.__authenticate_client(ta_key, ta_endpoint)
|
46 |
+
self.ta_client = ta_client
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def __authenticate_client(key: str, endpoint: str):
|
50 |
+
ta_credential = AzureKeyCredential(key)
|
51 |
+
text_analytics_client = TextAnalyticsClient(
|
52 |
+
endpoint=endpoint, credential=ta_credential
|
53 |
+
)
|
54 |
+
return text_analytics_client
|
55 |
+
|
56 |
+
def analyze(
|
57 |
+
self, text: str, entities: List[str] = None, nlp_artifacts: NlpArtifacts = None
|
58 |
+
) -> List[RecognizerResult]:
|
59 |
+
if not entities:
|
60 |
+
entities = []
|
61 |
+
response = self.ta_client.recognize_pii_entities(
|
62 |
+
[text], language=self.supported_language
|
63 |
+
)
|
64 |
+
results = [doc for doc in response if not doc.is_error]
|
65 |
+
recognizer_results = []
|
66 |
+
for res in results:
|
67 |
+
for entity in res.entities:
|
68 |
+
if entity.category not in self.supported_entities:
|
69 |
+
continue
|
70 |
+
analysis_explanation = TextAnalyticsWrapper._build_explanation(
|
71 |
+
original_score=entity.confidence_score,
|
72 |
+
entity_type=entity.category,
|
73 |
+
)
|
74 |
+
recognizer_results.append(
|
75 |
+
RecognizerResult(
|
76 |
+
entity_type=entity.category,
|
77 |
+
start=entity.offset,
|
78 |
+
end=entity.offset + len(entity.text),
|
79 |
+
score=entity.confidence_score,
|
80 |
+
analysis_explanation=analysis_explanation,
|
81 |
+
)
|
82 |
+
)
|
83 |
+
|
84 |
+
return recognizer_results
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def _build_explanation(
|
88 |
+
original_score: float, entity_type: str
|
89 |
+
) -> AnalysisExplanation:
|
90 |
+
explanation = AnalysisExplanation(
|
91 |
+
recognizer=TextAnalyticsWrapper.__class__.__name__,
|
92 |
+
original_score=original_score,
|
93 |
+
textual_explanation=f"Identified as {entity_type} by Text Analytics",
|
94 |
+
)
|
95 |
+
return explanation
|
96 |
+
|
97 |
+
def load(self) -> None:
|
98 |
+
pass
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
import presidio_helpers
|
103 |
+
dotenv.load_dotenv()
|
104 |
+
text = """
|
105 |
+
Here are a few example sentences we currently support:
|
106 |
+
|
107 |
+
Hello, my name is David Johnson and I live in Maine.
|
108 |
+
My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
|
109 |
+
|
110 |
+
On September 18 I visited microsoft.com and sent an email to [email protected], from the IP 192.168.0.1.
|
111 |
+
|
112 |
+
My passport: 191280342 and my phone number: (212) 555-1234.
|
113 |
+
|
114 |
+
This is a valid International Bank Account Number: IL150120690000003111111 . Can you please check the status on bank account 954567876544?
|
115 |
+
|
116 |
+
Kate's social security number is 078-05-1126. Her driver license? it is 1234567A.
|
117 |
+
"""
|
118 |
+
analyzer = presidio_helpers.analyzer_engine(
|
119 |
+
model_path="Azure Text Analytics PII",
|
120 |
+
ta_key=os.environ["TA_KEY"],
|
121 |
+
ta_endpoint=os.environ["TA_ENDPOINT"],
|
122 |
+
)
|
123 |
+
analyzer.analyze(text=text, language="en")
|