presidio_demo / presidio_streamlit.py
presidio's picture
Update presidio_streamlit.py
c67e137 verified
"""Streamlit app for Presidio."""
import logging
import os
import traceback
import dotenv
import pandas as pd
import streamlit as st
import streamlit.components.v1 as components
from annotated_text import annotated_text
from streamlit_tags import st_tags
from openai_fake_data_generator import OpenAIParams
from presidio_helpers import (
get_supported_entities,
analyze,
anonymize,
annotate,
create_fake_data,
analyzer_engine,
)
st.set_page_config(
page_title="Presidio demo",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
"About": "https://microsoft.github.io/presidio/",
},
)
dotenv.load_dotenv()
logger = logging.getLogger("presidio-streamlit")
allow_other_models = os.getenv("ALLOW_OTHER_MODELS", False)
# Sidebar
st.sidebar.header(
"""
PII De-Identification with [Microsoft Presidio](https://microsoft.github.io/presidio/)
"""
)
model_help_text = """
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair,
as well as service such as Azure Text Analytics PII.
"""
st_ta_key = st_ta_endpoint = ""
model_list = [
"spaCy/en_core_web_lg",
"flair/ner-english-large",
"HuggingFace/obi/deid_roberta_i2b2",
"HuggingFace/StanfordAIMI/stanford-deidentifier-base",
"stanza/en",
"Azure AI Language",
"Other",
]
if not allow_other_models:
model_list.pop()
# Select model
st_model = st.sidebar.selectbox(
"NER model package",
model_list,
index=1,
help=model_help_text,
)
# Extract model package.
st_model_package = st_model.split("/")[0]
# Remove package prefix (if needed)
st_model = (
st_model
if st_model_package.lower() not in ("spacy", "stanza", "huggingface")
else "/".join(st_model.split("/")[1:])
)
if st_model == "Other":
st_model_package = st.sidebar.selectbox(
"NER model OSS package", options=["spaCy", "stanza", "Flair", "HuggingFace"]
)
st_model = st.sidebar.text_input(f"NER model name", value="")
if st_model == "Azure AI Language":
st_ta_key = st.sidebar.text_input(
f"Azure AI Language key", value=os.getenv("TA_KEY", ""), type="password"
)
st_ta_endpoint = st.sidebar.text_input(
f"Azure AI Language endpoint",
value=os.getenv("TA_ENDPOINT", default=""),
help="For more info: https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/personally-identifiable-information/overview", # noqa: E501
)
st.sidebar.warning("Note: Models might take some time to download. ")
analyzer_params = (st_model_package, st_model, st_ta_key, st_ta_endpoint)
logger.debug(f"analyzer_params: {analyzer_params}")
st_operator = st.sidebar.selectbox(
"De-identification approach",
["redact", "replace", "synthesize", "highlight", "mask", "hash", "encrypt"],
index=1,
help="""
Select which manipulation to the text is requested after PII has been identified.\n
- Redact: Completely remove the PII text\n
- Replace: Replace the PII text with a constant, e.g. <PERSON>\n
- Synthesize: Replace with fake values (requires an OpenAI key)\n
- Highlight: Shows the original text with PII highlighted in colors\n
- Mask: Replaces a requested number of characters with an asterisk (or other mask character)\n
- Hash: Replaces with the hash of the PII string\n
- Encrypt: Replaces with an AES encryption of the PII string, allowing the process to be reversed
""",
)
st_mask_char = "*"
st_number_of_chars = 15
st_encrypt_key = "WmZq4t7w!z%C&F)J"
open_ai_params = None
logger.debug(f"st_operator: {st_operator}")
def set_up_openai_synthesis():
"""Set up the OpenAI API key and model for text synthesis."""
if os.getenv("OPENAI_TYPE", default="openai") == "Azure":
openai_api_type = "azure"
st_openai_api_base = st.sidebar.text_input(
"Azure OpenAI base URL",
value=os.getenv("AZURE_OPENAI_ENDPOINT", default=""),
)
openai_key = os.getenv("AZURE_OPENAI_KEY", default="")
st_deployment_id = st.sidebar.text_input(
"Deployment name", value=os.getenv("AZURE_OPENAI_DEPLOYMENT", default="")
)
st_openai_version = st.sidebar.text_input(
"OpenAI version",
value=os.getenv("OPENAI_API_VERSION", default="2023-05-15"),
)
else:
openai_api_type = "openai"
st_openai_version = st_openai_api_base = None
st_deployment_id = ""
openai_key = os.getenv("OPENAI_KEY", default="")
st_openai_key = st.sidebar.text_input(
"OPENAI_KEY",
value=openai_key,
help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.",
type="password",
)
st_openai_model = st.sidebar.text_input(
"OpenAI model for text synthesis",
value=os.getenv("OPENAI_MODEL", default="gpt-3.5-turbo-instruct"),
help="See more here: https://platform.openai.com/docs/models/",
)
return (
openai_api_type,
st_openai_api_base,
st_deployment_id,
st_openai_version,
st_openai_key,
st_openai_model,
)
if st_operator == "mask":
st_number_of_chars = st.sidebar.number_input(
"number of chars", value=st_number_of_chars, min_value=0, max_value=100
)
st_mask_char = st.sidebar.text_input(
"Mask character", value=st_mask_char, max_chars=1
)
elif st_operator == "encrypt":
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
elif st_operator == "synthesize":
(
openai_api_type,
st_openai_api_base,
st_deployment_id,
st_openai_version,
st_openai_key,
st_openai_model,
) = set_up_openai_synthesis()
open_ai_params = OpenAIParams(
openai_key=st_openai_key,
model=st_openai_model,
api_base=st_openai_api_base,
deployment_id=st_deployment_id,
api_version=st_openai_version,
api_type=openai_api_type,
)
st_threshold = st.sidebar.slider(
label="Acceptance threshold",
min_value=0.0,
max_value=1.0,
value=0.35,
help="Define the threshold for accepting a detection as PII. See more here: ",
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations to findings",
value=False,
help="Add the decision process to the output table. "
"More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/",
)
# Allow and deny lists
st_deny_allow_expander = st.sidebar.expander(
"Allowlists and denylists",
expanded=False,
)
with st_deny_allow_expander:
st_allow_list = st_tags(
label="Add words to the allowlist", text="Enter word and press enter."
)
st.caption(
"Allowlists contain words that are not considered PII, but are detected as such."
)
st_deny_list = st_tags(
label="Add words to the denylist", text="Enter word and press enter."
)
st.caption(
"Denylists contain words that are considered PII, but are not detected as such."
)
# Main panel
with st.expander("About this demo", expanded=False):
st.info(
"""Presidio is an open source customizable framework for PII detection and de-identification.
\n\n[Code](https://aka.ms/presidio) |
[Tutorial](https://microsoft.github.io/presidio/tutorial/) |
[Installation](https://microsoft.github.io/presidio/installation/) |
[FAQ](https://microsoft.github.io/presidio/faq/) |
[Feedback](https://forms.office.com/r/9ufyYjfDaY) |"""
)
st.info(
"""
Use this demo to:
- Experiment with different off-the-shelf models and NLP packages.
- Explore the different de-identification options, including redaction, masking, encryption and more.
- Generate synthetic text with Microsoft Presidio and OpenAI.
- Configure allow and deny lists.
This demo website shows some of Presidio's capabilities.
[Visit our website](https://microsoft.github.io/presidio) for more info,
samples and deployment options.
"""
)
st.markdown(
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" # noqa
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
)
analyzer_load_state = st.info("Starting Presidio analyzer...")
analyzer_load_state.empty()
# Read default text
with open("demo_text.txt") as f:
demo_text = f.readlines()
# Create two columns for before and after
col1, col2 = st.columns(2)
# Before:
col1.subheader("Input")
st_text = col1.text_area(
label="Enter text", value="".join(demo_text), height=400, key="text_input"
)
try:
# Choose entities
st_entities_expander = st.sidebar.expander("Choose entities to look for")
st_entities = st_entities_expander.multiselect(
label="Which entities to look for?",
options=get_supported_entities(*analyzer_params),
default=list(get_supported_entities(*analyzer_params)),
help="Limit the list of PII entities detected. "
"This list is dynamic and based on the NER model and registered recognizers. "
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
)
# Before
analyzer_load_state = st.info("Starting Presidio analyzer...")
analyzer = analyzer_engine(*analyzer_params)
analyzer_load_state.empty()
st_analyze_results = analyze(
*analyzer_params,
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
allow_list=st_allow_list,
deny_list=st_deny_list,
)
# After
if st_operator not in ("highlight", "synthesize"):
with col2:
st.subheader(f"Output")
st_anonymize_results = anonymize(
text=st_text,
operator=st_operator,
mask_char=st_mask_char,
number_of_chars=st_number_of_chars,
encrypt_key=st_encrypt_key,
analyze_results=st_analyze_results,
)
st.text_area(
label="De-identified", value=st_anonymize_results.text, height=400
)
elif st_operator == "synthesize":
with col2:
st.subheader(f"OpenAI Generated output")
fake_data = create_fake_data(
st_text,
st_analyze_results,
open_ai_params,
)
st.text_area(label="Synthetic data", value=fake_data, height=400)
else:
st.subheader("Highlighted")
annotated_tokens = annotate(text=st_text, analyze_results=st_analyze_results)
# annotated_tokens
annotated_text(*annotated_tokens)
# table result
st.subheader(
"Findings"
if not st_return_decision_process
else "Findings with decision factors"
)
if st_analyze_results:
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results]
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
{
"entity_type": "Entity type",
"text": "Text",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results]
if st_return_decision_process:
analysis_explanation_df = pd.DataFrame.from_records(
[r.analysis_explanation.to_dict() for r in st_analyze_results]
)
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
st.text("No findings")
except Exception as e:
print(e)
traceback.print_exc()
st.error(e)
components.html(
"""
<script type="text/javascript">
(function(c,l,a,r,i,t,y){
c[a]=c[a]||function(){(c[a].q=c[a].q||[]).push(arguments)};
t=l.createElement(r);t.async=1;t.src="https://www.clarity.ms/tag/"+i;
y=l.getElementsByTagName(r)[0];y.parentNode.insertBefore(t,y);
})(window, document, "clarity", "script", "h7f8bp42n8");
</script>
"""
)