|
import os |
|
from dotenv import load_dotenv |
|
import shutil |
|
import uvicorn |
|
import streamlit as st |
|
import requests |
|
import threading |
|
|
|
from fastapi import FastAPI, UploadFile, File, HTTPException |
|
from pydantic import BaseModel, ConfigDict |
|
|
|
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate |
|
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from llama_index.core import Settings |
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
app = FastAPI() |
|
|
|
|
|
Settings.llm = HuggingFaceInferenceAPI( |
|
model_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
context_window=3900, |
|
token=os.getenv("HF_TOKEN"), |
|
max_new_tokens=1000, |
|
generate_kwargs={"temperature": 0.5}, |
|
) |
|
Settings.embed_model = HuggingFaceEmbedding( |
|
model_name="BAAI/bge-small-en-v1.5" |
|
) |
|
|
|
|
|
PERSIST_DIR = "./db" |
|
DATA_DIR = "data" |
|
|
|
|
|
os.makedirs(DATA_DIR, exist_ok=True) |
|
os.makedirs(PERSIST_DIR, exist_ok=True) |
|
|
|
class Query(BaseModel): |
|
question: str |
|
|
|
|
|
def data_ingestion(): |
|
documents = SimpleDirectoryReader(DATA_DIR).load_data() |
|
storage_context = StorageContext.from_defaults() |
|
index = VectorStoreIndex.from_documents(documents) |
|
index.storage_context.persist(persist_dir=PERSIST_DIR) |
|
|
|
def handle_query(query): |
|
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) |
|
index = load_index_from_storage(storage_context) |
|
chat_text_qa_msgs = [ |
|
( |
|
"user", |
|
"""You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. |
|
Context: |
|
{context_str} |
|
Question: |
|
{query_str} |
|
""" |
|
) |
|
] |
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) |
|
query_engine = index.as_query_engine(text_qa_template=text_qa_template) |
|
answer = query_engine.query(query) |
|
|
|
if hasattr(answer, 'response'): |
|
return answer.response |
|
elif isinstance(answer, dict) and 'response' in answer: |
|
return answer['response'] |
|
else: |
|
return "Sorry, I couldn't find an answer." |
|
|
|
@app.post("/upload") |
|
async def upload_file(file: UploadFile = File(...)): |
|
file_extension = os.path.splitext(file.filename)[1].lower() |
|
if file_extension not in [".pdf", ".docx", ".txt"]: |
|
raise HTTPException(status_code=400, detail="Invalid file type. Only PDF, DOCX, and TXT are allowed.") |
|
|
|
file_path = os.path.join(DATA_DIR, file.filename) |
|
with open(file_path, "wb") as buffer: |
|
shutil.copyfileobj(file.file, buffer) |
|
|
|
data_ingestion() |
|
return {"message": "File uploaded and processed successfully"} |
|
|
|
@app.post("/query") |
|
async def query_document(query: Query): |
|
if not os.listdir(DATA_DIR): |
|
raise HTTPException(status_code=400, detail="No document has been uploaded yet.") |
|
|
|
response = handle_query(query.question) |
|
return {"response": response} |
|
|
|
|
|
def streamlit_ui(): |
|
st.title("Chat with your Document π") |
|
st.markdown("Chat hereπ") |
|
|
|
icons = {"assistant": "π€", "user": "π€"} |
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF, DOCX, or TXT file and ask me anything about its content.'}] |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message['role'], avatar=icons[message['role']]): |
|
st.write(message['content']) |
|
|
|
with st.sidebar: |
|
st.title("Menu:") |
|
uploaded_file = st.file_uploader("Upload your document (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"]) |
|
if st.button("Submit & Process") and uploaded_file: |
|
with st.spinner("Processing..."): |
|
files = {"file": (uploaded_file.name, uploaded_file.getvalue(), uploaded_file.type)} |
|
response = requests.post("http://localhost:8000/upload", files=files) |
|
if response.status_code == 200: |
|
st.success("File uploaded and processed successfully") |
|
else: |
|
st.error("Error uploading file") |
|
|
|
user_prompt = st.chat_input("Ask me anything about the content of the document:") |
|
|
|
if user_prompt: |
|
st.session_state.messages.append({'role': 'user', "content": user_prompt}) |
|
with st.chat_message("user", avatar=icons["user"]): |
|
st.write(user_prompt) |
|
|
|
|
|
with st.spinner("Thinking..."): |
|
response = requests.post("http://localhost:8000/query", json={"question": user_prompt}) |
|
if response.status_code == 200: |
|
assistant_response = response.json()["response"] |
|
with st.chat_message("assistant", avatar=icons["assistant"]): |
|
st.write(assistant_response) |
|
st.session_state.messages.append({'role': 'assistant', "content": assistant_response}) |
|
else: |
|
st.error("Error querying document") |
|
|
|
def run_fastapi(): |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|
|
if __name__ == "__main__": |
|
|
|
fastapi_thread = threading.Thread(target=run_fastapi) |
|
fastapi_thread.start() |
|
|
|
|
|
streamlit_ui() |