Chat_with_Multiple_Documents / huggingface_space.py
pratham0011's picture
Update huggingface_space.py
702f2af verified
import os
from dotenv import load_dotenv
import shutil
import uvicorn
import streamlit as st
import requests
import threading
from fastapi import FastAPI, UploadFile, File, HTTPException
from pydantic import BaseModel, ConfigDict
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
# Load environment variables
load_dotenv()
app = FastAPI()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3900,
token=os.getenv("HF_TOKEN"),
max_new_tokens=1000,
generate_kwargs={"temperature": 0.5},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "./db"
DATA_DIR = "data"
# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
class Query(BaseModel):
question: str
def data_ingestion():
documents = SimpleDirectoryReader(DATA_DIR).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
chat_text_qa_msgs = [
(
"user",
"""You are Q&A assistant named CHAT-DOC. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
Context:
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
return answer.response
elif isinstance(answer, dict) and 'response' in answer:
return answer['response']
else:
return "Sorry, I couldn't find an answer."
@app.post("/upload")
async def upload_file(file: UploadFile = File(...)):
file_extension = os.path.splitext(file.filename)[1].lower()
if file_extension not in [".pdf", ".docx", ".txt"]:
raise HTTPException(status_code=400, detail="Invalid file type. Only PDF, DOCX, and TXT are allowed.")
file_path = os.path.join(DATA_DIR, file.filename)
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
data_ingestion()
return {"message": "File uploaded and processed successfully"}
@app.post("/query")
async def query_document(query: Query):
if not os.listdir(DATA_DIR):
raise HTTPException(status_code=400, detail="No document has been uploaded yet.")
response = handle_query(query.question)
return {"response": response}
# Streamlit UI
def streamlit_ui():
st.title("Chat with your Document πŸ“„")
st.markdown("Chat hereπŸ‘‡")
icons = {"assistant": "πŸ€–", "user": "πŸ‘€"}
if 'messages' not in st.session_state:
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF, DOCX, or TXT file and ask me anything about its content.'}]
for message in st.session_state.messages:
with st.chat_message(message['role'], avatar=icons[message['role']]):
st.write(message['content'])
with st.sidebar:
st.title("Menu:")
uploaded_file = st.file_uploader("Upload your document (PDF, DOCX, TXT)", type=["pdf", "docx", "txt"])
if st.button("Submit & Process") and uploaded_file:
with st.spinner("Processing..."):
files = {"file": (uploaded_file.name, uploaded_file.getvalue(), uploaded_file.type)}
response = requests.post("http://localhost:8000/upload", files=files)
if response.status_code == 200:
st.success("File uploaded and processed successfully")
else:
st.error("Error uploading file")
user_prompt = st.chat_input("Ask me anything about the content of the document:")
if user_prompt:
st.session_state.messages.append({'role': 'user', "content": user_prompt})
with st.chat_message("user", avatar=icons["user"]):
st.write(user_prompt)
# Trigger assistant's response retrieval and update UI
with st.spinner("Thinking..."):
response = requests.post("http://localhost:8000/query", json={"question": user_prompt})
if response.status_code == 200:
assistant_response = response.json()["response"]
with st.chat_message("assistant", avatar=icons["assistant"]):
st.write(assistant_response)
st.session_state.messages.append({'role': 'assistant', "content": assistant_response})
else:
st.error("Error querying document")
def run_fastapi():
uvicorn.run(app, host="0.0.0.0", port=8000)
if __name__ == "__main__":
# Start FastAPI in a separate thread
fastapi_thread = threading.Thread(target=run_fastapi)
fastapi_thread.start()
# Run Streamlit (this will run in the main thread)
streamlit_ui()