import gradio as gr import spaces import argparse import torch from transformers import AutoModel, AutoProcessor from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList parser = argparse.ArgumentParser() # parser.add_argument("--device", type=str, default="cuda:0") # parser.add_argument("--ckpt_path", type=str, default="./salmonn_7b_v0.pth") # parser.add_argument("--whisper_path", type=str, default="./whisper_large_v2") # parser.add_argument("--beats_path", type=str, default="./beats/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt") # parser.add_argument("--vicuna_path", type=str, default="./vicuna-7b-v1.5") # parser.add_argument("--low_resource", action='store_true', default=False) parser.add_argument("--port", default=9527) args = parser.parse_args() args.low_resource = True title = """

Product description generator

""" css = """ div#col-container { margin: 0 auto; max-width: 840px; } """ model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True).to(device) processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [151645] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False @torch.no_grad() def response(message, history, image): stop = StopOnTokens() messages = [{"role": "system", "content": "You are a helpful assistant."}] for user_msg, assistant_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) if len(messages) == 1: message = f" {message}" messages.append({"role": "user", "content": message}) model_inputs = processor.tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ) image = ( processor.feature_extractor(image) .unsqueeze(0) ) attention_mask = torch.ones( 1, model_inputs.shape[1] + processor.num_image_latents - 1 ) model_inputs = { "input_ids": model_inputs, "images": image, "attention_mask": attention_mask } model_inputs = {k: v.to(device) for k, v in model_inputs.items()} streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() history.append([message, ""]) partial_response = "" for new_token in streamer: partial_response += new_token history[-1][1] = partial_response yield history, gr.Button(visible=False), gr.Button(visible=True, interactive=True) with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) gr.Image(type="pil") gr.Button(value="Upload") demo.launch()