Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import argparse | |
import torch | |
from transformers import AutoModel, AutoProcessor | |
from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList | |
parser = argparse.ArgumentParser() | |
# parser.add_argument("--device", type=str, default="cuda:0") | |
# parser.add_argument("--ckpt_path", type=str, default="./salmonn_7b_v0.pth") | |
# parser.add_argument("--whisper_path", type=str, default="./whisper_large_v2") | |
# parser.add_argument("--beats_path", type=str, default="./beats/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt") | |
# parser.add_argument("--vicuna_path", type=str, default="./vicuna-7b-v1.5") | |
# parser.add_argument("--low_resource", action='store_true', default=False) | |
parser.add_argument("--port", default=9527) | |
args = parser.parse_args() | |
args.low_resource = True | |
title = """<h1 style="text-align: center;">Product description generator</h1>""" | |
css = """ | |
div#col-container { | |
margin: 0 auto; | |
max-width: 840px; | |
} | |
""" | |
model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True).to(device) | |
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [151645] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def response(message, history, image): | |
stop = StopOnTokens() | |
messages = [{"role": "system", "content": "You are a helpful assistant."}] | |
for user_msg, assistant_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
if len(messages) == 1: | |
message = f" <image>{message}" | |
messages.append({"role": "user", "content": message}) | |
model_inputs = processor.tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
) | |
image = ( | |
processor.feature_extractor(image) | |
.unsqueeze(0) | |
) | |
attention_mask = torch.ones( | |
1, model_inputs.shape[1] + processor.num_image_latents - 1 | |
) | |
model_inputs = { | |
"input_ids": model_inputs, | |
"images": image, | |
"attention_mask": attention_mask | |
} | |
model_inputs = {k: v.to(device) for k, v in model_inputs.items()} | |
streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
history.append([message, ""]) | |
partial_response = "" | |
for new_token in streamer: | |
partial_response += new_token | |
history[-1][1] = partial_response | |
yield history, gr.Button(visible=False), gr.Button(visible=True, interactive=True) | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
gr.Image(type="pil") | |
gr.Button(value="Upload") | |
demo.launch() |