File size: 14,856 Bytes
9b3f85e
 
 
 
 
 
 
 
 
 
932c8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933],
    [0.351, 0.760, 0.903],
]


MODELS_DETAILS = {
    "DETR-RESNET-50": """DetrForObjectDetection(
  (model): DetrModel(
    (backbone): DetrConvModel(
      (conv_encoder): DetrConvEncoder(
        (model): FeatureListNet(
          (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
          (bn1): DetrFrozenBatchNorm2d()
          (act1): ReLU(inplace=True)
          (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
          (layer1): Sequential(
            (0): Bottleneck(
              (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
              (downsample): Sequential(
                (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              )
            )
            (1): Bottleneck(
              (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
            (2): Bottleneck(
              (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
          )
          (layer2): Sequential(
            (0): Bottleneck(
              (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
              (downsample): Sequential(
                (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
                (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              )
            )
            (1): Bottleneck(
              (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
            (2): Bottleneck(
              (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
            (3): Bottleneck(
              (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
          )
          (layer3): Sequential(
            (0): Bottleneck(
              (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
              (downsample): Sequential(
                (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
                (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              )
            )
            (1): Bottleneck(
              (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
            (2): Bottleneck(
              (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
            (3): Bottleneck(
              (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
            (4): Bottleneck(
              (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
            (5): Bottleneck(
              (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
          )
          (layer4): Sequential(
            (0): Bottleneck(
              (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
              (downsample): Sequential(
                (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
                (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              )
            )
            (1): Bottleneck(
              (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
            (2): Bottleneck(
              (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn1): DetrFrozenBatchNorm2d()
              (act1): ReLU(inplace=True)
              (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn2): DetrFrozenBatchNorm2d()
              (drop_block): Identity()
              (act2): ReLU(inplace=True)
              (aa): Identity()
              (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn3): DetrFrozenBatchNorm2d()
              (act3): ReLU(inplace=True)
            )
          )
        )
      )
      (position_embedding): DetrSinePositionEmbedding()
    )
    (input_projection): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
    (query_position_embeddings): Embedding(100, 256)
    (encoder): DetrEncoder(
      (layers): ModuleList(
        (0-5): 6 x DetrEncoderLayer(
          (self_attn): DetrAttention(
            (k_proj): Linear(in_features=256, out_features=256, bias=True)
            (v_proj): Linear(in_features=256, out_features=256, bias=True)
            (q_proj): Linear(in_features=256, out_features=256, bias=True)
            (out_proj): Linear(in_features=256, out_features=256, bias=True)
          )
          (self_attn_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
          (activation_fn): ReLU()
          (fc1): Linear(in_features=256, out_features=2048, bias=True)
          (fc2): Linear(in_features=2048, out_features=256, bias=True)
          (final_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        )
      )
    )
    (decoder): DetrDecoder(
      (layers): ModuleList(
        (0-5): 6 x DetrDecoderLayer(
          (self_attn): DetrAttention(
            (k_proj): Linear(in_features=256, out_features=256, bias=True)
            (v_proj): Linear(in_features=256, out_features=256, bias=True)
            (q_proj): Linear(in_features=256, out_features=256, bias=True)
            (out_proj): Linear(in_features=256, out_features=256, bias=True)
          )
          (activation_fn): ReLU()
          (self_attn_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
          (encoder_attn): DetrAttention(
            (k_proj): Linear(in_features=256, out_features=256, bias=True)
            (v_proj): Linear(in_features=256, out_features=256, bias=True)
            (q_proj): Linear(in_features=256, out_features=256, bias=True)
            (out_proj): Linear(in_features=256, out_features=256, bias=True)
          )
          (encoder_attn_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
          (fc1): Linear(in_features=256, out_features=2048, bias=True)
          (fc2): Linear(in_features=2048, out_features=256, bias=True)
          (final_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        )
      )
      (layernorm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
    )
  )
  (class_labels_classifier): Linear(in_features=256, out_features=2, bias=True)
  (bbox_predictor): DetrMLPPredictionHead(
    (layers): ModuleList(
      (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
      (2): Linear(in_features=256, out_features=4, bias=True)
    )
  )
)"""
}