File size: 3,237 Bytes
97f6d3d
 
 
 
3c87c5c
640f727
 
8c28401
 
 
 
 
 
 
 
 
97f6d3d
 
b9eb3a2
8c28401
 
 
 
97f6d3d
a11b754
 
 
97f6d3d
 
ae3466a
 
3c87c5c
97f6d3d
a11b754
3c87c5c
97f6d3d
a11b754
97f6d3d
 
 
8c28401
a11b754
97f6d3d
 
 
 
 
8c28401
97f6d3d
 
 
 
ae3466a
 
 
97f6d3d
 
 
8c28401
 
 
 
 
 
97f6d3d
 
8c28401
 
97f6d3d
c51bf55
8c28401
97f6d3d
8c28401
97f6d3d
8c28401
97f6d3d
3c87c5c
8c28401
 
 
 
 
 
 
 
 
 
 
 
 
97f6d3d
8c28401
 
97f6d3d
 
71746cb
 
 
ae3466a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import pandas as pd
import yfinance as yf
import numpy as np
import matplotlib.pyplot as plt
import io
import gradio as gr

def sma_crossover_strategy(initial_budget, start_date, end_date, ticker):
    try:
        df = yf.download(ticker, start=start_date, end=end_date, progress=False)
        if df.empty:
            return None, "No data available for the specified ticker and date range."
    except Exception as e:
        return None, f"Error fetching data: {str(e)}"

    df = df[['Close']]
    df['SMA_50'] = df['Close'].rolling(window=50).mean()
    df['SMA_150'] = df['Close'].rolling(window=150).mean()

    df['Signal'] = 0
    df.loc[df['SMA_50'] > df['SMA_150'], 'Signal'] = 1
    df.loc[df['SMA_50'] < df['SMA_150'], 'Signal'] = -1
    df['Position'] = df['Signal'].diff()

    cash = initial_budget
    shares = 0
    portfolio_values = []

    for index, row in df.iterrows():
        if pd.isna(row['Close']):
            continue
        if row['Position'] == 1 and cash > 0:
            shares = cash / row['Close']
            cash = 0
        elif row['Position'] == -1 and shares > 0:
            cash = shares * row['Close']
            shares = 0
        portfolio_value = cash + (shares * row['Close'])
        portfolio_values.append(portfolio_value)

    df = df.iloc[149:]  # Skip rows without SMA values
    df['Portfolio Value'] = portfolio_values[149:]

    plt.figure(figsize=(14, 8))
    plt.plot(df['Portfolio Value'], label='Portfolio Value', color='purple')
    plt.xlabel('Date')
    plt.ylabel('Portfolio Value ($)')
    plt.title(f'Portfolio Value Over Time with 50/150 SMA Crossover Strategy ({ticker})')
    plt.legend()
    plt.grid()
    plt.tight_layout()

    plot_file = io.BytesIO()
    plt.savefig(plot_file, format='png')
    plot_file.seek(0)
    plt.close()

    final_value = portfolio_values[-1]
    profit_loss = final_value - initial_budget
    percentage_return = (profit_loss / initial_budget) * 100

    results = f"""
    Ticker: {ticker}
    Trading Period: {start_date} to {end_date}
    Initial Investment: ${initial_budget}
    Final Portfolio Value: ${final_value:.2f}
    Total Profit/Loss: ${profit_loss:.2f}
    Percentage Return: {percentage_return:.2f}%
    """

    return plot_file, results

# Define Gradio App
with gr.Blocks() as app:
    gr.Markdown("# SMA Crossover Trading Strategy Simulator")

    with gr.Row():
        initial_budget = gr.Number(label="Initial Investment ($)", value=100)
        start_date = gr.Text(label="Start Date (YYYY-MM-DD)", value="1993-01-01")
        end_date = gr.Text(label="End Date (YYYY-MM-DD)", value="2023-12-31")
        ticker = gr.Dropdown(
            label="Stock Ticker Symbol",
            choices=["SPY", "TSLA", "GOOGL", "AAPL", "MSFT"],
            value="SPY",
        )
    run_button = gr.Button("Run Simulation")
    portfolio_graph = gr.Image(label="Portfolio Value Over Time")
    summary_text = gr.Textbox(label="Simulation Summary", lines=8)

    run_button.click(
        sma_crossover_strategy,
        inputs=[initial_budget, start_date, end_date, ticker],
        outputs=[portfolio_graph, summary_text],
    )

# Ensure only one app.launch() is called
if __name__ == "__main__":
    app.launch()