multimodalart HF staff commited on
Commit
9b6b78e
·
1 Parent(s): 7419ef7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +202 -0
app.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from __future__ import annotations
4
+
5
+ import os
6
+ import random
7
+ import uuid
8
+
9
+ import gradio as gr
10
+ import numpy as np
11
+ from PIL import Image
12
+ import torch
13
+ from diffusers import DiffusionPipeline
14
+
15
+ DESCRIPTION = """# Playground v2"""
16
+ if not torch.cuda.is_available():
17
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
18
+
19
+ MAX_SEED = np.iinfo(np.int32).max
20
+ CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
21
+ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
22
+ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "1") == "1"
23
+ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
24
+
25
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
26
+
27
+ NUM_IMAGES_PER_PROMPT = 1
28
+
29
+ if torch.cuda.is_available():
30
+ pipe = DiffusionPipeline.from_pretrained(
31
+ "playgroundai/playground-v2-1024px-aesthetic",
32
+ torch_dtype=torch.float16,
33
+ use_safetensors=True,
34
+ add_watermarker=False,
35
+ variant="fp16"
36
+ )
37
+ if ENABLE_CPU_OFFLOAD:
38
+ pipe.enable_model_cpu_offload()
39
+ else:
40
+ pipe.to(device)
41
+ print("Loaded on Device!")
42
+
43
+ if USE_TORCH_COMPILE:
44
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
45
+ print("Model Compiled!")
46
+
47
+
48
+ def save_image(img):
49
+ unique_name = str(uuid.uuid4()) + ".png"
50
+ img.save(unique_name)
51
+ return unique_name
52
+
53
+
54
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
55
+ if randomize_seed:
56
+ seed = random.randint(0, MAX_SEED)
57
+ return seed
58
+
59
+
60
+ def generate(
61
+ prompt: str,
62
+ negative_prompt: str = "",
63
+ use_negative_prompt: bool = False,
64
+ seed: int = 0,
65
+ width: int = 1024,
66
+ height: int = 1024,
67
+ guidance_scale: float = 3,
68
+ randomize_seed: bool = False,
69
+ use_resolution_binning: bool = True,
70
+ progress=gr.Progress(track_tqdm=True),
71
+ ):
72
+ seed = int(randomize_seed_fn(seed, randomize_seed))
73
+ generator = torch.Generator().manual_seed(seed)
74
+
75
+ if not use_negative_prompt:
76
+ negative_prompt = None # type: ignore
77
+ prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
78
+
79
+ images = pipe(
80
+ prompt=prompt,
81
+ negative_prompt=negative_prompt,
82
+ width=width,
83
+ height=height,
84
+ guidance_scale=guidance_scale,
85
+ num_inference_steps=num_inference_steps,
86
+ generator=generator,
87
+ num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
88
+ use_resolution_binning=use_resolution_binning,
89
+ output_type="pil",
90
+ ).images
91
+
92
+ image_paths = [save_image(img) for img in images]
93
+ print(image_paths)
94
+ return image_paths, seed
95
+
96
+
97
+ examples = [
98
+ "neon holography crystal cat",
99
+ "a cat eating a piece of cheese",
100
+ "an astronaut riding a horse in space",
101
+ "a cartoon of a boy playing with a tiger",
102
+ "a cute robot artist painting on an easel, concept art",
103
+ "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
104
+ ]
105
+
106
+ with gr.Blocks(css="style.css") as demo:
107
+ gr.Markdown(DESCRIPTION)
108
+ gr.DuplicateButton(
109
+ value="Duplicate Space for private use",
110
+ elem_id="duplicate-button",
111
+ visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
112
+ )
113
+ with gr.Group():
114
+ with gr.Row():
115
+ prompt = gr.Text(
116
+ label="Prompt",
117
+ show_label=False,
118
+ max_lines=1,
119
+ placeholder="Enter your prompt",
120
+ container=False,
121
+ )
122
+ run_button = gr.Button("Run", scale=0)
123
+ result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False)
124
+ with gr.Accordion("Advanced options", open=False):
125
+ with gr.Row():
126
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
127
+ negative_prompt = gr.Text(
128
+ label="Negative prompt",
129
+ max_lines=1,
130
+ placeholder="Enter a negative prompt",
131
+ visible=True,
132
+ )
133
+ seed = gr.Slider(
134
+ label="Seed",
135
+ minimum=0,
136
+ maximum=MAX_SEED,
137
+ step=1,
138
+ value=0,
139
+ )
140
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
141
+ with gr.Row(visible=True):
142
+ width = gr.Slider(
143
+ label="Width",
144
+ minimum=256,
145
+ maximum=MAX_IMAGE_SIZE,
146
+ step=32,
147
+ value=1024,
148
+ )
149
+ height = gr.Slider(
150
+ label="Height",
151
+ minimum=256,
152
+ maximum=MAX_IMAGE_SIZE,
153
+ step=32,
154
+ value=1024,
155
+ )
156
+ with gr.Row():
157
+ guidance_scale = gr.Slider(
158
+ label="Guidance Scale",
159
+ minimum=0.1,
160
+ maximum=20,
161
+ step=0.1,
162
+ value=3.0,
163
+ )
164
+
165
+ gr.Examples(
166
+ examples=examples,
167
+ inputs=prompt,
168
+ outputs=[result, seed],
169
+ fn=generate,
170
+ cache_examples=CACHE_EXAMPLES,
171
+ )
172
+
173
+ use_negative_prompt.change(
174
+ fn=lambda x: gr.update(visible=x),
175
+ inputs=use_negative_prompt,
176
+ outputs=negative_prompt,
177
+ api_name=False,
178
+ )
179
+
180
+ gr.on(
181
+ triggers=[
182
+ prompt.submit,
183
+ negative_prompt.submit,
184
+ run_button.click,
185
+ ],
186
+ fn=generate,
187
+ inputs=[
188
+ prompt,
189
+ negative_prompt,
190
+ use_negative_prompt,
191
+ seed,
192
+ width,
193
+ height,
194
+ guidance_scale,
195
+ randomize_seed,
196
+ ],
197
+ outputs=[result, seed],
198
+ api_name="run",
199
+ )
200
+
201
+ if __name__ == "__main__":
202
+ demo.queue(max_size=20).launch()