"""Full definition of a GPT NeoX Language Model, all of it in this single file. Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model. """ import math from typing import Any, Optional, Tuple import torch import torch.nn as nn from typing_extensions import Self from tsai_gpt.config import Config from torch.nn import functional as F class GPT(nn.Module): def __init__(self, config: Config) -> None: super().__init__() assert config.padded_vocab_size is not None self.config = config self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias) self.transformer = nn.ModuleDict( dict( wte=nn.Embedding(config.padded_vocab_size, config.n_embd), h=nn.ModuleList(Block(config) for _ in range(config.n_layer)), ln_f=config.norm_class(config.n_embd, eps=config.norm_eps), ) ) self.max_seq_length = self.config.block_size self.mask_cache: Optional[torch.Tensor] = None @property def max_seq_length(self) -> int: return self._max_seq_length @max_seq_length.setter def max_seq_length(self, value: int) -> None: """ When doing inference, the sequences used might be shorter than the model's context length. This allows setting a smaller number to avoid allocating unused memory """ if value > self.config.block_size: raise ValueError(f"Cannot attend to {value}, block size is only {self.config.block_size}") self._max_seq_length = value if not hasattr(self, "cos"): # first call cos, sin = self.rope_cache() self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) elif value != self.cos.size(0): # override self.cos, self.sin = self.rope_cache(device=self.cos.device) # the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know # if the kv cache is expected def reset_parameters(self) -> None: # Trigger resetting the rope-cache self.max_seq_length = self.config.block_size def _init_weights(self, module: nn.Module) -> None: """Meant to be used with `gpt.apply(gpt._init_weights)`.""" if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None) -> torch.Tensor: T = idx.size(1) if self.max_seq_length < T: raise ValueError(f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}.") if input_pos is not None: # use the kv cache cos = self.cos.index_select(0, input_pos) sin = self.sin.index_select(0, input_pos) if self.mask_cache is None: raise TypeError("You need to call `gpt.set_kv_cache()`") mask = self.mask_cache.index_select(2, input_pos) else: cos = self.cos[:T] sin = self.sin[:T] mask = None x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) for block in self.transformer.h: x = block(x, cos, sin, mask, input_pos) x = self.transformer.ln_f(x) return self.lm_head(x) # (b, t, vocab_size) @classmethod def from_name(cls, name: str, **kwargs: Any) -> Self: return cls(Config.from_name(name, **kwargs)) def rope_cache(self, device: Optional[torch.device] = None) -> Tuple[torch.Tensor, torch.Tensor]: return build_rope_cache( seq_len=self.max_seq_length, n_elem=self.config.rope_n_elem, device=device, condense_ratio=self.config.rope_condense_ratio, base=self.config.rope_base, ) def set_kv_cache( self, batch_size: int, rope_cache_length: Optional[int] = None, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> None: if rope_cache_length is None: rope_cache_length = self.cos.size(-1) max_seq_length = self.max_seq_length # initialize the kv cache for all blocks for block in self.transformer.h: block.attn.kv_cache = block.attn.build_kv_cache( batch_size, max_seq_length, rope_cache_length, device, dtype ) if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length: # passing `attn_mask` to SDPA downgrades it to use the inefficient implementation. since we only need the mask # for the kv-cache support (only during inference), we only create it in that situation # this will be resolved by https://github.com/pytorch/pytorch/issues/96099 ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool) self.mask_cache = torch.tril(ones).unsqueeze(0).unsqueeze(0) def clear_kv_cache(self) -> None: self.mask_cache = None for block in self.transformer.h: block.attn.kv_cache = None @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # forward the model to get the logits for the index in the sequence logits = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx class Block(nn.Module): def __init__(self, config: Config) -> None: super().__init__() self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps) self.attn = CausalSelfAttention(config) self.norm_2 = None if config.shared_attention_norm else config.norm_class(config.n_embd, eps=config.norm_eps) self.mlp = config.mlp_class(config) self.config = config def forward( self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, mask: Optional[torch.Tensor] = None, input_pos: Optional[torch.Tensor] = None, ) -> torch.Tensor: n_1 = self.norm_1(x) h = self.attn(n_1, cos, sin, mask, input_pos) if self.config.parallel_residual: n_2 = n_1 if self.config.shared_attention_norm else self.norm_2(x) x = self.mlp(n_2) + h + x else: if self.config.shared_attention_norm: raise NotImplementedError( "No checkpoint amongst the ones we support uses this configuration" " (non-parallel residual and shared attention norm)." ) x = h + x x = self.mlp(self.norm_2(x)) + x return x class CausalSelfAttention(nn.Module): def __init__(self, config: Config) -> None: super().__init__() shape = (config.n_head + 2 * config.n_query_groups) * config.head_size # key, query, value projections for all heads, but in a batch self.attn = nn.Linear(config.n_embd, shape, bias=config.bias) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # disabled by default self.kv_cache: Optional[KVCache] = None self.config = config def forward( self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, mask: Optional[torch.Tensor] = None, input_pos: Optional[torch.Tensor] = None, ) -> torch.Tensor: B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) qkv = self.attn(x) # assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`) q_per_kv = self.config.n_head // self.config.n_query_groups total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size) qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs) # split batched computation into three q, k, v = qkv.split((q_per_kv, 1, 1), dim=2) # maybe repeat k and v if for the non multi-head attention cases # training: flash attention requires it # inference: multi-query would require a full kv cache so avoid it to limit its memory usage if self.config.n_query_groups != self.config.n_head and (input_pos is None or self.config.n_query_groups != 1): k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size) v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size) q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs) k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs) v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs) q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin) k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin) q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1) k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1) if input_pos is not None: if not isinstance(self.kv_cache, KVCache): raise TypeError("You need to call `gpt.set_kv_cache()`") k, v = self.kv_cache(input_pos, k, v) y = self.scaled_dot_product_attention(q, k, v, mask) y = y.reshape(B, T, C) # re-assemble all head outputs side by side # output projection return self.proj(y) def scaled_dot_product_attention( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> torch.Tensor: scale = 1.0 / math.sqrt(self.config.head_size) y = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None ) return y.transpose(1, 2) def build_kv_cache( self, batch_size: int, max_seq_length: int, rope_cache_length: Optional[int] = None, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> "KVCache": heads = 1 if self.config.n_query_groups == 1 else self.config.n_head v_shape = (batch_size, heads, max_seq_length, self.config.head_size) if rope_cache_length is None: if self.config.rotary_percentage != 1.0: raise TypeError("Please pass the `rope_cache_length=gpt.cos.size(-1)` value") k_shape = v_shape else: k_shape = ( batch_size, heads, max_seq_length, rope_cache_length + self.config.head_size - self.config.rope_n_elem, ) return KVCache(k_shape, v_shape, device=device, dtype=dtype) class GptNeoxMLP(nn.Module): def __init__(self, config: Config) -> None: super().__init__() self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) self.config = config def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.fc(x) x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate) return self.proj(x) class LLaMAMLP(nn.Module): def __init__(self, config: Config) -> None: super().__init__() self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) def forward(self, x: torch.Tensor) -> torch.Tensor: x_fc_1 = self.fc_1(x) x_fc_2 = self.fc_2(x) x = torch.nn.functional.silu(x_fc_1) * x_fc_2 return self.proj(x) def build_rope_cache( seq_len: int, n_elem: int, device: Optional[torch.device] = None, base: int = 10000, condense_ratio: int = 1 ) -> Tuple[torch.Tensor, torch.Tensor]: """Enhanced Transformer with Rotary Position Embedding. Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ transformers/rope/__init__.py. MIT License: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. """ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem)) # Create position indexes `[0, 1, ..., seq_len - 1]` seq_idx = torch.arange(seq_len, device=device) / condense_ratio # Calculate the product of position index and $\theta_i$ idx_theta = torch.outer(seq_idx, theta).repeat(1, 2) return torch.cos(idx_theta), torch.sin(idx_theta) def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: head_size = x.size(-1) x1 = x[..., : head_size // 2] # (B, nh, T, hs/2) x2 = x[..., head_size // 2 :] # (B, nh, T, hs/2) rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs) roped = (x * cos) + (rotated * sin) return roped.type_as(x) class KVCache(nn.Module): def __init__( self, k_shape: Tuple[int, int, int, int], v_shape: Tuple[int, int, int, int], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> None: super().__init__() self.register_buffer("k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False) self.register_buffer("v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False) def forward(self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # move the buffer to the activation dtype for when AMP is used self.k = self.k.to(k.dtype) self.v = self.v.to(v.dtype) # update the cache k = self.k.index_copy_(2, input_pos, k) v = self.v.index_copy_(2, input_pos, v) return k, v