import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Load the fine-tuned quantized model and tokenizer model = AutoModelForCausalLM.from_pretrained( "pitangent-ds/academic_phy", load_in_8bit=True, # Quantized model device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("pitangent-ds/academic_phy") # Function for inference def generate_response(input_text): inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) return decoded_output # Gradio Interface interface = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Enter input text:"), outputs=gr.Textbox(label="Generated Output"), title="Quantized Language Model", description="A Hugging Face Space deployment of a fine-tuned, 8-bit quantized language model." ) # Launch the app if __name__ == "__main__": interface.launch()