File size: 1,250 Bytes
d62afec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch 
import numpy as np

def process_attn(attention, rng, attn_func):
    heatmap = np.zeros((len(attention), attention[0].shape[1]))
    for i, attn_layer in enumerate(attention):
        attn_layer = attn_layer.to(torch.float32).numpy()

        if "sum" in attn_func:
            last_token_attn_to_inst = np.sum(attn_layer[0, :, -1, rng[0][0]:rng[0][1]], axis=1)
            attn = last_token_attn_to_inst
        
        elif "max" in attn_func:
            last_token_attn_to_inst = np.max(attn_layer[0, :, -1, rng[0][0]:rng[0][1]], axis=1)
            attn = last_token_attn_to_inst

        else: raise NotImplementedError
            
        last_token_attn_to_inst_sum = np.sum(attn_layer[0, :, -1, rng[0][0]:rng[0][1]], axis=1)
        last_token_attn_to_data_sum = np.sum(attn_layer[0, :, -1, rng[1][0]:rng[1][1]], axis=1)

        if "normalize" in attn_func:
            epsilon = 1e-8
            heatmap[i, :] = attn / (last_token_attn_to_inst_sum + last_token_attn_to_data_sum + epsilon)
        else:
            heatmap[i, :] = attn

    heatmap = np.nan_to_num(heatmap, nan=0.0)

    return heatmap


def calc_attn_score(heatmap, heads):
    score = np.mean([heatmap[l, h] for l, h in heads], axis=0)
    return score