Spaces:
Sleeping
Sleeping
import functools | |
from pathlib import Path | |
import yaml | |
def load_preset(name): | |
generate_params = { | |
'do_sample': True, | |
'temperature': 1, | |
'top_p': 1, | |
'typical_p': 1, | |
'epsilon_cutoff': 0, | |
'eta_cutoff': 0, | |
'tfs': 1, | |
'top_a': 0, | |
'repetition_penalty': 1, | |
'repetition_penalty_range': 0, | |
'encoder_repetition_penalty': 1, | |
'top_k': 0, | |
'num_beams': 1, | |
'penalty_alpha': 0, | |
'min_length': 0, | |
'length_penalty': 1, | |
'no_repeat_ngram_size': 0, | |
'early_stopping': False, | |
'mirostat_mode': 0, | |
'mirostat_tau': 5.0, | |
'mirostat_eta': 0.1, | |
} | |
if name not in ['None', None, '']: | |
with open(Path(f'presets/{name}.yaml'), 'r') as infile: | |
preset = yaml.safe_load(infile) | |
for k in preset: | |
generate_params[k] = preset[k] | |
generate_params['temperature'] = min(1.99, generate_params['temperature']) | |
return generate_params | |
def load_preset_memoized(name): | |
return load_preset(name) | |
def load_preset_for_ui(name, state): | |
generate_params = load_preset(name) | |
state.update(generate_params) | |
return state, *[generate_params[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']] | |
def generate_preset_yaml(state): | |
data = {k: state[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']} | |
return yaml.dump(data, sort_keys=False) | |