Spaces:
Sleeping
Sleeping
import os | |
from pathlib import Path | |
from typing import Any, Dict, Optional, Union | |
import torch | |
from torch.nn import CrossEntropyLoss | |
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from modules import shared | |
from modules.logging_colors import logger | |
if torch.cuda.is_available(): | |
from llama_cpp_cuda import Llama | |
else: | |
from llama_cpp import Llama | |
class LlamacppHF(PreTrainedModel): | |
def __init__(self, model): | |
super().__init__(PretrainedConfig()) | |
self.model = model | |
self.generation_config = GenerationConfig() | |
self.cache = None | |
def _validate_model_class(self): | |
pass | |
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): | |
pass | |
def prepare_inputs_for_generation(self, input_ids, **kwargs): | |
return {'input_ids': input_ids, **kwargs} | |
def device(self) -> torch.device: | |
return torch.device(0) | |
def __call__(self, *args, **kwargs): | |
# TODO: Some decoding methods (such as Contrastive Search) may not work at this time | |
assert len(args) == 0, 'no *args should be passed to forward' | |
use_cache = kwargs.get('use_cache', True) | |
labels = kwargs.get('labels', None) | |
seq = kwargs['input_ids'][0].tolist() | |
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None | |
# Make the forward call | |
seq_tensor = torch.tensor(seq) | |
if labels is None: | |
if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]): | |
self.model.reset() | |
self.model.eval(seq) | |
else: | |
self.model.eval([seq[-1]]) | |
logits = torch.tensor(self.model.eval_logits[-1]).view(1, 1, -1).to(kwargs['input_ids'].device) | |
else: | |
self.model.reset() | |
self.model.eval(seq) | |
logits = torch.tensor(self.model.eval_logits) | |
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(kwargs['input_ids'].device) | |
self.cache = seq_tensor | |
# Based on transformers/models/llama/modeling_llama.py | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, logits.shape[-1]) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss) | |
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): | |
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" | |
if isinstance(pretrained_model_name_or_path, str): | |
pretrained_model_name_or_path = Path(pretrained_model_name_or_path) | |
path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) | |
if path.is_file(): | |
model_file = path | |
else: | |
model_file = list(path.glob('*ggml*.bin'))[0] | |
logger.info(f"llama.cpp weights detected: {model_file}\n") | |
params = { | |
'model_path': str(model_file), | |
'n_ctx': shared.args.n_ctx, | |
'seed': int(shared.args.llama_cpp_seed), | |
'n_threads': shared.args.threads or None, | |
'n_batch': shared.args.n_batch, | |
'use_mmap': not shared.args.no_mmap, | |
'use_mlock': shared.args.mlock, | |
'low_vram': shared.args.low_vram, | |
'n_gpu_layers': shared.args.n_gpu_layers, | |
'rope_freq_base': 10000 * shared.args.alpha_value ** (64/63.), | |
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb, | |
'logits_all': True, | |
} | |
model = Llama(**params) | |
return LlamacppHF(model) | |