Spaces:
Sleeping
Sleeping
File size: 6,228 Bytes
82fea12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import asyncio
import functools
import threading
import time
import traceback
from threading import Thread
from typing import Callable, Optional
from modules import shared
from modules.chat import load_character_memoized
from modules.presets import load_preset_memoized
# We use a thread local to store the asyncio lock, so that each thread
# has its own lock. This isn't strictly necessary, but it makes it
# such that if we can support multiple worker threads in the future,
# thus handling multiple requests in parallel.
api_tls = threading.local()
def build_parameters(body, chat=False):
generate_params = {
'max_new_tokens': int(body.get('max_new_tokens', body.get('max_length', 200))),
'do_sample': bool(body.get('do_sample', True)),
'temperature': float(body.get('temperature', 0.5)),
'top_p': float(body.get('top_p', 1)),
'typical_p': float(body.get('typical_p', body.get('typical', 1))),
'epsilon_cutoff': float(body.get('epsilon_cutoff', 0)),
'eta_cutoff': float(body.get('eta_cutoff', 0)),
'tfs': float(body.get('tfs', 1)),
'top_a': float(body.get('top_a', 0)),
'repetition_penalty': float(body.get('repetition_penalty', body.get('rep_pen', 1.1))),
'repetition_penalty_range': int(body.get('repetition_penalty_range', 0)),
'encoder_repetition_penalty': float(body.get('encoder_repetition_penalty', 1.0)),
'top_k': int(body.get('top_k', 0)),
'min_length': int(body.get('min_length', 0)),
'no_repeat_ngram_size': int(body.get('no_repeat_ngram_size', 0)),
'num_beams': int(body.get('num_beams', 1)),
'penalty_alpha': float(body.get('penalty_alpha', 0)),
'length_penalty': float(body.get('length_penalty', 1)),
'early_stopping': bool(body.get('early_stopping', False)),
'mirostat_mode': int(body.get('mirostat_mode', 0)),
'mirostat_tau': float(body.get('mirostat_tau', 5)),
'mirostat_eta': float(body.get('mirostat_eta', 0.1)),
'seed': int(body.get('seed', -1)),
'add_bos_token': bool(body.get('add_bos_token', True)),
'truncation_length': int(body.get('truncation_length', body.get('max_context_length', 2048))),
'ban_eos_token': bool(body.get('ban_eos_token', False)),
'skip_special_tokens': bool(body.get('skip_special_tokens', True)),
'custom_stopping_strings': '', # leave this blank
'stopping_strings': body.get('stopping_strings', []),
}
preset_name = body.get('preset', 'None')
if preset_name not in ['None', None, '']:
preset = load_preset_memoized(preset_name)
generate_params.update(preset)
if chat:
character = body.get('character')
instruction_template = body.get('instruction_template', shared.settings['instruction_template'])
if str(instruction_template) == "None":
instruction_template = "Vicuna-v1.1"
name1, name2, _, greeting, context, _ = load_character_memoized(character, str(body.get('your_name', shared.settings['name1'])), shared.settings['name2'], instruct=False)
name1_instruct, name2_instruct, _, _, context_instruct, turn_template = load_character_memoized(instruction_template, '', '', instruct=True)
generate_params.update({
'stop_at_newline': bool(body.get('stop_at_newline', shared.settings['stop_at_newline'])),
'chat_generation_attempts': int(body.get('chat_generation_attempts', shared.settings['chat_generation_attempts'])),
'mode': str(body.get('mode', 'chat')),
'name1': name1,
'name2': name2,
'context': context,
'greeting': greeting,
'name1_instruct': name1_instruct,
'name2_instruct': name2_instruct,
'context_instruct': body.get('context_instruct', context_instruct),
'turn_template': turn_template,
'chat-instruct_command': str(body.get('chat-instruct_command', shared.settings['chat-instruct_command'])),
'history': body.get('history', {'internal': [], 'visible': []})
})
return generate_params
def try_start_cloudflared(port: int, max_attempts: int = 3, on_start: Optional[Callable[[str], None]] = None):
Thread(target=_start_cloudflared, args=[
port, max_attempts, on_start], daemon=True).start()
def _start_cloudflared(port: int, max_attempts: int = 3, on_start: Optional[Callable[[str], None]] = None):
try:
from flask_cloudflared import _run_cloudflared
except ImportError:
print('You should install flask_cloudflared manually')
raise Exception(
'flask_cloudflared not installed. Make sure you installed the requirements.txt for this extension.')
for _ in range(max_attempts):
try:
public_url = _run_cloudflared(port, port + 1)
if on_start:
on_start(public_url)
return
except Exception:
traceback.print_exc()
time.sleep(3)
raise Exception('Could not start cloudflared.')
def _get_api_lock(tls) -> asyncio.Lock:
"""
The streaming and blocking API implementations each run on their own
thread, and multiplex requests using asyncio. If multiple outstanding
requests are received at once, we will try to acquire the shared lock
shared.generation_lock multiple times in succession in the same thread,
which will cause a deadlock.
To avoid this, we use this wrapper function to block on an asyncio
lock, and then try and grab the shared lock only while holding
the asyncio lock.
"""
if not hasattr(tls, "asyncio_lock"):
tls.asyncio_lock = asyncio.Lock()
return tls.asyncio_lock
def with_api_lock(func):
"""
This decorator should be added to all streaming API methods which
require access to the shared.generation_lock. It ensures that the
tls.asyncio_lock is acquired before the method is called, and
released afterwards.
"""
@functools.wraps(func)
async def api_wrapper(*args, **kwargs):
async with _get_api_lock(api_tls):
return await func(*args, **kwargs)
return api_wrapper
|