Spaces:
Runtime error
Runtime error
phyloforfun
commited on
Commit
·
1f68f21
1
Parent(s):
60a5c82
init
Browse files- app.py +327 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, math, csv
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_image_select import image_select
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import matplotlib.colors as mcolors
|
8 |
+
|
9 |
+
class DirectoryManager:
|
10 |
+
def __init__(self, output_dir):
|
11 |
+
self.dir_output = output_dir
|
12 |
+
self.mask_flag = os.path.join(output_dir, "mask_flag")
|
13 |
+
self.mask_plant = os.path.join(output_dir, "mask_plant")
|
14 |
+
self.mask_plant_plot = os.path.join(output_dir, "mask_plant_plot")
|
15 |
+
self.plant_rgb = os.path.join(output_dir, "plant_rgb")
|
16 |
+
self.plot_rgb = os.path.join(output_dir, "plot_rgb")
|
17 |
+
self.plant_rgb_warp = os.path.join(output_dir, "plant_rgb_warp")
|
18 |
+
self.plant_mask_warp = os.path.join(output_dir, "plant_mask_warp")
|
19 |
+
self.data = os.path.join(output_dir, "data")
|
20 |
+
|
21 |
+
def create_directories(self):
|
22 |
+
os.makedirs(self.dir_output, exist_ok=True)
|
23 |
+
os.makedirs(self.mask_flag, exist_ok=True)
|
24 |
+
os.makedirs(self.mask_plant, exist_ok=True)
|
25 |
+
os.makedirs(self.mask_plant_plot, exist_ok=True)
|
26 |
+
os.makedirs(self.plant_rgb, exist_ok=True)
|
27 |
+
os.makedirs(self.plot_rgb, exist_ok=True)
|
28 |
+
os.makedirs(self.plant_rgb_warp, exist_ok=True)
|
29 |
+
os.makedirs(self.plant_mask_warp, exist_ok=True)
|
30 |
+
os.makedirs(self.data, exist_ok=True)
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def hex_to_hsv_bounds(hex_color, sat_value, val_value):
|
35 |
+
# Convert RGB hex to color
|
36 |
+
rgb_color = mcolors.hex2color(hex_color)
|
37 |
+
hsv_color = mcolors.rgb_to_hsv(np.array(rgb_color).reshape(1, 1, 3))
|
38 |
+
|
39 |
+
# Adjust the saturation and value components based on user's input
|
40 |
+
hsv_color[0][0][1] = sat_value / 255.0 # Saturation
|
41 |
+
hsv_color[0][0][2] = val_value / 255.0 # Value
|
42 |
+
|
43 |
+
hsv_bound = tuple((hsv_color * np.array([179, 255, 255])).astype(int)[0][0])
|
44 |
+
|
45 |
+
return hsv_bound
|
46 |
+
|
47 |
+
def warp_image(img, vertices):
|
48 |
+
# Compute distances between the vertices to determine the size of the target square
|
49 |
+
distances = [np.linalg.norm(np.array(vertices[i]) - np.array(vertices[i+1])) for i in range(len(vertices)-1)]
|
50 |
+
distances.append(np.linalg.norm(np.array(vertices[-1]) - np.array(vertices[0]))) # Add the distance between the last and first point
|
51 |
+
max_distance = max(distances)
|
52 |
+
|
53 |
+
# Define target vertices for the square
|
54 |
+
dst_vertices = np.array([
|
55 |
+
[max_distance - 1, 0],
|
56 |
+
[0, 0],
|
57 |
+
[0, max_distance - 1],
|
58 |
+
[max_distance - 1, max_distance - 1]
|
59 |
+
], dtype="float32")
|
60 |
+
|
61 |
+
# Compute the perspective transform matrix using the provided vertices
|
62 |
+
matrix = cv2.getPerspectiveTransform(np.array(vertices, dtype="float32"), dst_vertices)
|
63 |
+
|
64 |
+
# Warp the image to the square
|
65 |
+
warped_img = cv2.warpPerspective(img, matrix, (int(max_distance), int(max_distance)))
|
66 |
+
|
67 |
+
return warped_img
|
68 |
+
|
69 |
+
def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper):
|
70 |
+
img = cv2.imread(image_path)
|
71 |
+
|
72 |
+
# Check if image is valid
|
73 |
+
if img is None:
|
74 |
+
print(f"Error reading image from path: {image_path}")
|
75 |
+
return None, None, None, None, None, None, None, None, None, None
|
76 |
+
|
77 |
+
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Convert image to HSV
|
78 |
+
|
79 |
+
# Explicitly ensure bounds are integer tuples
|
80 |
+
flag_lower = tuple(int(x) for x in flag_lower)
|
81 |
+
flag_upper = tuple(int(x) for x in flag_upper)
|
82 |
+
plant_lower = tuple(int(x) for x in plant_lower)
|
83 |
+
plant_upper = tuple(int(x) for x in plant_upper)
|
84 |
+
|
85 |
+
flag_mask = cv2.inRange(hsv_img, flag_lower, flag_upper)
|
86 |
+
plant_mask = cv2.inRange(hsv_img, plant_lower, plant_upper)
|
87 |
+
|
88 |
+
# Find contours
|
89 |
+
contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
90 |
+
|
91 |
+
# Sort contours by area and keep only the largest 4
|
92 |
+
sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)[:4]
|
93 |
+
|
94 |
+
# If there are not 4 largest contours, return
|
95 |
+
if len(sorted_contours) != 4:
|
96 |
+
return None, None, None, None, None, None, None, None, None, None
|
97 |
+
|
98 |
+
# Create a new mask with only the largest 4 contours
|
99 |
+
largest_4_flag_mask = np.zeros_like(flag_mask)
|
100 |
+
cv2.drawContours(largest_4_flag_mask, sorted_contours, -1, (255), thickness=cv2.FILLED)
|
101 |
+
|
102 |
+
# Compute the centroid for each contour
|
103 |
+
centroids = []
|
104 |
+
for contour in sorted_contours:
|
105 |
+
M = cv2.moments(contour)
|
106 |
+
if M["m00"] != 0:
|
107 |
+
cx = int(M["m10"] / M["m00"])
|
108 |
+
cy = int(M["m01"] / M["m00"])
|
109 |
+
else:
|
110 |
+
cx, cy = 0, 0
|
111 |
+
centroids.append((cx, cy))
|
112 |
+
|
113 |
+
# Compute the centroid of the centroids
|
114 |
+
centroid_x = sum(x for x, y in centroids) / 4
|
115 |
+
centroid_y = sum(y for x, y in centroids) / 4
|
116 |
+
|
117 |
+
# Sort the centroids
|
118 |
+
centroids.sort(key=lambda point: (-math.atan2(point[1] - centroid_y, point[0] - centroid_x)) % (2 * np.pi))
|
119 |
+
|
120 |
+
# Create a polygon mask using the sorted centroids
|
121 |
+
poly_mask = np.zeros_like(flag_mask)
|
122 |
+
cv2.fillPoly(poly_mask, [np.array(centroids)], 255)
|
123 |
+
|
124 |
+
# Mask the plant_mask with poly_mask
|
125 |
+
mask_plant_plot = cv2.bitwise_and(plant_mask, plant_mask, mask=poly_mask)
|
126 |
+
|
127 |
+
# Count the number of black pixels inside the quadrilateral
|
128 |
+
total_pixels_in_quad = np.prod(poly_mask.shape)
|
129 |
+
white_pixels_in_quad = np.sum(poly_mask == 255)
|
130 |
+
black_pixels_in_quad = total_pixels_in_quad - white_pixels_in_quad
|
131 |
+
|
132 |
+
# Extract the RGB pixels from the original image using the mask_plant_plot
|
133 |
+
plant_rgb = cv2.bitwise_and(img, img, mask=mask_plant_plot)
|
134 |
+
|
135 |
+
# Draw the bounding quadrilateral
|
136 |
+
plot_rgb = plant_rgb.copy()
|
137 |
+
for i in range(4):
|
138 |
+
cv2.line(plot_rgb, centroids[i], centroids[(i+1)%4], (0, 0, 255), 3)
|
139 |
+
|
140 |
+
# Convert the masks to RGB for visualization
|
141 |
+
flag_mask_rgb = cv2.cvtColor(flag_mask, cv2.COLOR_GRAY2RGB)
|
142 |
+
orange_color = [255, 165, 0] # RGB value for orange
|
143 |
+
flag_mask_rgb[np.any(flag_mask_rgb != [0, 0, 0], axis=-1)] = orange_color
|
144 |
+
|
145 |
+
plant_mask_rgb = cv2.cvtColor(plant_mask, cv2.COLOR_GRAY2RGB)
|
146 |
+
mask_plant_plot_rgb = cv2.cvtColor(mask_plant_plot, cv2.COLOR_GRAY2RGB)
|
147 |
+
bright_green_color = [0, 255, 0]
|
148 |
+
plant_mask_rgb[np.any(plant_mask_rgb != [0, 0, 0], axis=-1)] = bright_green_color
|
149 |
+
mask_plant_plot_rgb[np.any(mask_plant_plot_rgb != [0, 0, 0], axis=-1)] = bright_green_color
|
150 |
+
|
151 |
+
# Warp the images
|
152 |
+
plant_rgb_warp = warp_image(plant_rgb, centroids)
|
153 |
+
plant_mask_warp = warp_image(mask_plant_plot_rgb, centroids)
|
154 |
+
|
155 |
+
return flag_mask_rgb, plant_mask_rgb, mask_plant_plot_rgb, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask, mask_plant_plot, black_pixels_in_quad
|
156 |
+
|
157 |
+
def calculate_coverage(mask_plant_plot, plant_mask_warp, black_pixels_in_quad):
|
158 |
+
# Calculate the percentage of white pixels for mask_plant_plot
|
159 |
+
white_pixels_plot = np.sum(mask_plant_plot > 0)
|
160 |
+
total_pixels_plot = mask_plant_plot.size
|
161 |
+
plot_coverage = (white_pixels_plot / black_pixels_in_quad) * 100
|
162 |
+
|
163 |
+
# Convert plant_mask_warp to grayscale
|
164 |
+
plant_mask_warp_gray = cv2.cvtColor(plant_mask_warp, cv2.COLOR_BGR2GRAY)
|
165 |
+
|
166 |
+
# Calculate the percentage of white pixels for plant_mask_warp
|
167 |
+
white_pixels_warp = np.sum(plant_mask_warp_gray > 0)
|
168 |
+
total_pixels_warp = plant_mask_warp_gray.size
|
169 |
+
warp_coverage = (white_pixels_warp / total_pixels_warp) * 100
|
170 |
+
|
171 |
+
# Calculate the area in cm^2 of the mask_plant_plot
|
172 |
+
# Given that the real-life size of the square is 2 square meters or 20000 cm^2
|
173 |
+
plot_area_cm2 = (white_pixels_warp / total_pixels_warp) * 20000
|
174 |
+
|
175 |
+
return round(plot_coverage,2), round(warp_coverage,2), round(plot_area_cm2,2)
|
176 |
+
|
177 |
+
def get_color_parameters():
|
178 |
+
# Color pickers for hue component
|
179 |
+
FL, FL_S, FL_SS = st.columns([2,4,4])
|
180 |
+
with FL:
|
181 |
+
flag_lower_hex = st.color_picker("Flag Color Lower Bound Hue", "#33211f")
|
182 |
+
with FL_S:
|
183 |
+
flag_lower_sat = st.slider("Flag Lower Bound Saturation", 0, 255, 120)
|
184 |
+
with FL_SS:
|
185 |
+
flag_lower_val = st.slider("Flag Lower Bound Value", 0, 255, 150)
|
186 |
+
|
187 |
+
FU, FU_S, FU_SS = st.columns([2,4,4])
|
188 |
+
with FU:
|
189 |
+
flag_upper_hex = st.color_picker("Flag Color Upper Bound Hue", "#ff7700")
|
190 |
+
with FU_S:
|
191 |
+
flag_upper_sat = st.slider("Flag Upper Bound Saturation", 0, 255, 255)
|
192 |
+
with FU_SS:
|
193 |
+
flag_upper_val = st.slider("Flag Upper Bound Value", 0, 255, 255)
|
194 |
+
|
195 |
+
PL, PL_S, PL_SS = st.columns([2,4,4])
|
196 |
+
with PL:
|
197 |
+
plant_lower_hex = st.color_picker("Plant Color Lower Bound Hue", "#504F49")
|
198 |
+
with PL_S:
|
199 |
+
plant_lower_sat = st.slider("Plant Lower Bound Saturation", 0, 255, 30)
|
200 |
+
with PL_SS:
|
201 |
+
plant_lower_val = st.slider("Plant Lower Bound Value", 0, 255, 30)
|
202 |
+
|
203 |
+
PU, PU_S, PU_SS = st.columns([2,4,4])
|
204 |
+
with PU:
|
205 |
+
plant_upper_hex = st.color_picker("Plant Color Upper Bound Hue", "#00CFFF")
|
206 |
+
with PU_S:
|
207 |
+
plant_upper_sat = st.slider("Plant Upper Bound Saturation", 0, 255, 255)
|
208 |
+
with PU_SS:
|
209 |
+
plant_upper_val = st.slider("Plant Upper Bound Value", 0, 255, 255)
|
210 |
+
|
211 |
+
# Get HSV bounds using the modified function
|
212 |
+
flag_lower_bound = hex_to_hsv_bounds(flag_lower_hex, flag_lower_sat, flag_lower_val)
|
213 |
+
flag_upper_bound = hex_to_hsv_bounds(flag_upper_hex, flag_upper_sat, flag_upper_val)
|
214 |
+
plant_lower_bound = hex_to_hsv_bounds(plant_lower_hex, plant_lower_sat, plant_lower_val)
|
215 |
+
plant_upper_bound = hex_to_hsv_bounds(plant_upper_hex, plant_upper_sat, plant_upper_val)
|
216 |
+
|
217 |
+
return flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound
|
218 |
+
|
219 |
+
def save_img(directory, base_name, mask):
|
220 |
+
mask_name = os.path.join(directory, os.path.basename(base_name))
|
221 |
+
cv2.imwrite(mask_name, mask)
|
222 |
+
|
223 |
+
def main():
|
224 |
+
|
225 |
+
_, R_coverage, R_plot_area_cm2, R_save = st.columns([5,2,2,2])
|
226 |
+
img_gallery, img_main, img_seg, img_green, img_warp = st.columns([1,4,2,2,2])
|
227 |
+
|
228 |
+
dir_input = st.text_input("Input directory for images:", value="D:\Dropbox\GreenSight\demo")
|
229 |
+
dir_output = st.text_input("Output directory:", value="D:\Dropbox\GreenSight\demo_out")
|
230 |
+
|
231 |
+
directory_manager = DirectoryManager(dir_output)
|
232 |
+
directory_manager.create_directories()
|
233 |
+
|
234 |
+
run_name = st.text_input("Run name:", value="test")
|
235 |
+
file_name = os.path.join(directory_manager.data, f"{run_name}.csv")
|
236 |
+
headers = ['image',"plant_coverage_uncorrected_percen", "plant_coverage_corrected_percent", "plant_area_corrected_cm2"]
|
237 |
+
file_exists = os.path.isfile(file_name)
|
238 |
+
|
239 |
+
if 'input_list' not in st.session_state:
|
240 |
+
input_images = [os.path.join(dir_input, fname) for fname in os.listdir(dir_input) if fname.endswith(('.jpg', '.jpeg', '.png'))]
|
241 |
+
st.session_state.input_list = input_images
|
242 |
+
|
243 |
+
if os.path.exists(dir_input):
|
244 |
+
|
245 |
+
if len(st.session_state.input_list) == 0 or st.session_state.input_list is None:
|
246 |
+
st.balloons()
|
247 |
+
else:
|
248 |
+
with img_gallery:
|
249 |
+
selected_img = image_select("Select an image", st.session_state.input_list, use_container_width=False)
|
250 |
+
base_name = os.path.basename(selected_img)
|
251 |
+
|
252 |
+
if selected_img:
|
253 |
+
|
254 |
+
selected_img_view = Image.open(selected_img)
|
255 |
+
with img_main:
|
256 |
+
st.image(selected_img_view, caption="Selected Image", use_column_width='auto')
|
257 |
+
|
258 |
+
flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound = get_color_parameters()
|
259 |
+
|
260 |
+
flag_mask, plant_mask, mask_plant_plot, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask_bi, mask_plant_plot_bi, black_pixels_in_quad = process_image(selected_img, flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound)
|
261 |
+
|
262 |
+
if plant_mask_warp is not None:
|
263 |
+
plot_coverage, warp_coverage, plot_area_cm2 = calculate_coverage(mask_plant_plot_bi, plant_mask_warp, black_pixels_in_quad)
|
264 |
+
|
265 |
+
with R_coverage:
|
266 |
+
st.markdown(f"Uncorrected Plant Coverage: {plot_coverage}%")
|
267 |
+
with R_plot_area_cm2:
|
268 |
+
st.markdown(f"Corrected Plant Coverage: {warp_coverage}%")
|
269 |
+
st.markdown(f"Corrected Plant Area: {plot_area_cm2}cm2")
|
270 |
+
|
271 |
+
# Display masks in galleries
|
272 |
+
with img_seg:
|
273 |
+
st.image(plant_mask, caption="Plant Mask", use_column_width=True)
|
274 |
+
st.image(flag_mask, caption="Flag Mask", use_column_width=True)
|
275 |
+
with img_green:
|
276 |
+
st.image(mask_plant_plot, caption="Plant Mask Inside Plot", use_column_width=True)
|
277 |
+
st.image(plant_rgb, caption="Plant Material", use_column_width=True)
|
278 |
+
with img_warp:
|
279 |
+
st.image(plot_rgb, caption="Plant Material Inside Plot", use_column_width=True)
|
280 |
+
st.image(plant_rgb_warp, caption="Plant Mask Inside Plot Warped to Square", use_column_width=True)
|
281 |
+
# st.image(plot_rgb_warp, caption="Flag Mask", use_column_width=True)
|
282 |
+
with R_save:
|
283 |
+
if st.button('Save'):
|
284 |
+
# Save the masks to their respective folders
|
285 |
+
save_img(directory_manager.mask_flag, base_name, flag_mask)
|
286 |
+
save_img(directory_manager.mask_plant, base_name, plant_mask)
|
287 |
+
save_img(directory_manager.mask_plant_plot, base_name, mask_plant_plot)
|
288 |
+
save_img(directory_manager.plant_rgb, base_name, plant_rgb)
|
289 |
+
save_img(directory_manager.plot_rgb, base_name, plot_rgb)
|
290 |
+
save_img(directory_manager.plant_rgb_warp, base_name, plant_rgb_warp)
|
291 |
+
save_img(directory_manager.plant_mask_warp, base_name, plant_mask_warp)
|
292 |
+
|
293 |
+
# Append the data to the CSV file
|
294 |
+
with open(file_name, mode='a', newline='') as file:
|
295 |
+
writer = csv.writer(file)
|
296 |
+
|
297 |
+
# If the file doesn't exist, write the headers
|
298 |
+
if not file_exists:
|
299 |
+
writer.writerow(headers)
|
300 |
+
|
301 |
+
# Write the data
|
302 |
+
writer.writerow([f"{base_name}",f"{plot_coverage}", f"{warp_coverage}", f"{plot_area_cm2}"])
|
303 |
+
|
304 |
+
# Remove processed image from the list
|
305 |
+
st.session_state.input_list.remove(selected_img)
|
306 |
+
st.rerun()
|
307 |
+
else:
|
308 |
+
with R_save:
|
309 |
+
if st.button('Save as Failure'):
|
310 |
+
# Append the data to the CSV file
|
311 |
+
with open(file_name, mode='a', newline='') as file:
|
312 |
+
writer = csv.writer(file)
|
313 |
+
|
314 |
+
# If the file doesn't exist, write the headers
|
315 |
+
if not file_exists:
|
316 |
+
writer.writerow(headers)
|
317 |
+
|
318 |
+
# Write the data
|
319 |
+
writer.writerow([f"{base_name}",f"NA", f"NA", f"NA"])
|
320 |
+
|
321 |
+
# Remove processed image from the list
|
322 |
+
st.session_state.input_list.remove(selected_img)
|
323 |
+
st.rerun()
|
324 |
+
|
325 |
+
st.set_page_config(layout="wide", page_title='GreenSight')
|
326 |
+
st.title("GreenSight")
|
327 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
matplotlib
|
3 |
+
streamlit
|
4 |
+
streamlit_image_select
|
5 |
+
opencv-python
|
6 |
+
Pillow
|