GreenSight / app.py
phyloforfun's picture
update
d927fa8
import os, math, csv, shutil, itertools
import streamlit as st
from streamlit_image_select import image_select
import cv2
import numpy as np
from PIL import Image
import matplotlib.colors as mcolors
from io import BytesIO
MAX_GALLERY_IMAGES = 50
GALLERY_IMAGE_SIZE = 128
MIN_AREA = 10
class DirectoryManager:
def __init__(self, output_dir):
self.dir_output = output_dir
self.mask_flag = os.path.join(output_dir, "mask_flag")
self.mask_plant = os.path.join(output_dir, "mask_plant")
self.mask_plant_plot = os.path.join(output_dir, "mask_plant_plot")
self.plant_rgb = os.path.join(output_dir, "plant_rgb")
self.plot_rgb = os.path.join(output_dir, "plot_rgb")
self.plant_rgb_warp = os.path.join(output_dir, "plant_rgb_warp")
self.plant_mask_warp = os.path.join(output_dir, "plant_mask_warp")
self.data = os.path.join(output_dir, "data")
def create_directories(self):
os.makedirs(self.dir_output, exist_ok=True)
os.makedirs(self.mask_flag, exist_ok=True)
os.makedirs(self.mask_plant, exist_ok=True)
os.makedirs(self.mask_plant_plot, exist_ok=True)
os.makedirs(self.plant_rgb, exist_ok=True)
os.makedirs(self.plot_rgb, exist_ok=True)
os.makedirs(self.plant_rgb_warp, exist_ok=True)
os.makedirs(self.plant_mask_warp, exist_ok=True)
os.makedirs(self.data, exist_ok=True)
def hex_to_hsv_bounds(hex_color, sat_value, val_value):
# Convert RGB hex to color
rgb_color = mcolors.hex2color(hex_color)
hsv_color = mcolors.rgb_to_hsv(np.array(rgb_color).reshape(1, 1, 3))
# Adjust the saturation and value components based on user's input
hsv_color[0][0][1] = sat_value / 255.0 # Saturation
hsv_color[0][0][2] = val_value / 255.0 # Value
hsv_bound = tuple((hsv_color * np.array([179, 255, 255])).astype(int)[0][0])
return hsv_bound
def warp_image(img, vertices):
# Compute distances between the vertices to determine the size of the target square
distances = [np.linalg.norm(np.array(vertices[i]) - np.array(vertices[i+1])) for i in range(len(vertices)-1)]
distances.append(np.linalg.norm(np.array(vertices[-1]) - np.array(vertices[0]))) # Add the distance between the last and first point
max_distance = max(distances)
# Define target vertices for the square
dst_vertices = np.array([
[max_distance - 1, 0],
[0, 0],
[0, max_distance - 1],
[max_distance - 1, max_distance - 1]
], dtype="float32")
# Compute the perspective transform matrix using the provided vertices
matrix = cv2.getPerspectiveTransform(np.array(vertices, dtype="float32"), dst_vertices)
# Warp the image to the square
warped_img = cv2.warpPerspective(img, matrix, (int(max_distance), int(max_distance)))
return warped_img
# Assuming get_points_from_contours is a function that takes a tuple of four contours
# and returns their respective centroid points as a list of tuples [(x1,y1), (x2,y2), (x3,y3), (x4,y4)]
def get_points_from_contours(contours):
centroids = []
for contour in contours:
# Compute the centroid for the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
centroids.append((cX, cY))
else:
# If the contour is a single point or line (which should not happen with flags), handle it here
pass
return centroids
# Function to display the image with the selected quadrilateral superimposed
def display_image_with_quadrilateral(image, points):
# Make a copy of the image to draw on
overlay_image = image.copy()
# Draw the quadrilateral
cv2.polylines(overlay_image, [np.array(points)], isClosed=True, color=(0, 255, 0), thickness=3)
# Display the image with the quadrilateral
st.image(overlay_image, caption="Quadrilateral on Image", use_column_width='auto')
# Function to update displayed quadrilateral based on selected index
def update_displayed_quadrilateral(index, point_combinations, base_image_path):
# Extract the four points of the current quadrilateral
quad_points = get_points_from_contours(point_combinations[index])
# Read the base image
base_image = cv2.imread(base_image_path)
# If the image is not found, handle the error appropriately
if base_image is None:
st.error("Failed to load image.")
return
# Display the image with the selected quadrilateral
display_image_with_quadrilateral(base_image, quad_points)
def quadrilateral_area(centroids):
# Assuming centroids are in correct order (A, B, C, D) to form a quadrilateral
def distance(p1, p2):
return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
A, B, C, D = centroids
# Using Bretschneider's formula to calculate area of a quadrilateral
a = distance(A, B)
b = distance(B, C)
c = distance(C, D)
d = distance(D, A)
p = (a + b + c + d) / 2 # semi-perimeter
return math.sqrt((p - a) * (p - b) * (p - c) * (p - d))
def sort_permutations_by_area(valid_permutations):
# Calculate area for each permutation and return sorted list
perm_areas = [(perm, quadrilateral_area(get_points_from_contours(perm))) for perm in valid_permutations]
# Sort by area in descending order (largest first)
perm_areas.sort(key=lambda x: x[1], reverse=True)
# Return only the sorted permutations, not the areas
sorted_permutations = [perm for perm, area in perm_areas]
return sorted_permutations
def is_valid_quadrilateral(centroids):
if len(centroids) != 4:
return False
def ccw(A, B, C):
return (C[1] - A[1]) * (B[0] - A[0]) > (B[1] - A[1]) * (C[0] - A[0])
def intersect(A, B, C, D):
return ccw(A, C, D) != ccw(B, C, D) and ccw(A, B, C) != ccw(A, B, D)
A, B, C, D = centroids
return not (intersect(A, B, C, D) or intersect(A, D, B, C))
def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper, loc, file_name, file_exists, selected_img, headers, base_name):
with loc:
btn_back, btn_next = st.columns([2,2])
img = cv2.imread(image_path)
# Check if image is valid
if img is None:
print(f"Error reading image from path: {image_path}")
return None, None, None, None, None, None, None, None, None, None
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Convert image to HSV
# Explicitly ensure bounds are integer tuples
flag_lower = tuple(int(x) for x in flag_lower)
flag_upper = tuple(int(x) for x in flag_upper)
plant_lower = tuple(int(x) for x in plant_lower)
plant_upper = tuple(int(x) for x in plant_upper)
flag_mask = cv2.inRange(hsv_img, flag_lower, flag_upper)
plant_mask = cv2.inRange(hsv_img, plant_lower, plant_upper)
# # Find contours
# contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# # Sort contours by area and keep only the largest 4
# sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)[:4]
# # If there are not 4 largest contours, return
# if len(sorted_contours) != 4:
# return None, None, None, None, None, None, None, None, None, None
# Find contours
contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Sort contours by area and keep a significant number, assuming noise has much smaller area
sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)
# Filter out noise based on a predefined area threshold
significant_contours = [cnt for cnt in sorted_contours if cv2.contourArea(cnt) > MIN_AREA]
# Logic to handle cases where there are more than 4 significant contours
centroids = []
if len(significant_contours) < 4:
return None, None, None, None, None, None, None, None, None, None
elif len(significant_contours) > 4:
st.session_state['keep_quad'] = False
# while not st.session_state['keep_quad']:
with loc:
st.warning("Cycle until correct plot bounds are found")
# Create all possible combinations of four points
if len(significant_contours) >= 4:
# Generate all permutations of four points from the significant contours
permutations_of_four = list(itertools.permutations(significant_contours, 4))
# Filter out invalid quadrilaterals
valid_permutations0 = [perm for perm in permutations_of_four if is_valid_quadrilateral(get_points_from_contours(perm))]
valid_permutations = sort_permutations_by_area(valid_permutations0)
if not valid_permutations:
st.error("No valid quadrilaterals found.")
return None, None, None, None, None, None, None, None, None, None
# Placeholder for quadrilateral indices
selected_quad_index = 0
# Function to update displayed quadrilateral based on selected index
def update_displayed_quadrilateral(index):
# Extract the four points of the current quadrilateral
centroids = get_points_from_contours(valid_permutations[index])
return centroids
# Show initial quadrilateral
centroids = update_displayed_quadrilateral(selected_quad_index)
with btn_back:
# Button to go to the previous quadrilateral
if st.button('Previous'):
st.session_state.quad_index = (st.session_state.quad_index - 1) % len(valid_permutations)
centroids = update_displayed_quadrilateral(st.session_state.quad_index)
with btn_next:
# Button to go to the next quadrilateral
if st.button('Next'):
st.session_state.quad_index = (st.session_state.quad_index + 1) % len(valid_permutations)
centroids = update_displayed_quadrilateral(st.session_state.quad_index)
with loc:
if st.button('Keep Plot Bounds'):
st.session_state['keep_quad'] = True
if st.button('Save as Failure'):
st.session_state['keep_quad'] = True
# Append the data to the CSV file
with open(file_name, mode='a', newline='') as file:
writer = csv.writer(file)
# If the file doesn't exist, write the headers
if not file_exists:
writer.writerow(headers)
# Write the data
writer.writerow([f"{base_name}",f"NA", f"NA", f"NA"])
# Remove processed image from the list
st.session_state['input_list'].remove(selected_img)
st.rerun()
# If there are exactly 4 largest contours, proceed with existing logic
elif len(significant_contours) == 4:
# Create a new mask with only the largest 4 contours
largest_4_flag_mask = np.zeros_like(flag_mask)
cv2.drawContours(largest_4_flag_mask, sorted_contours, -1, (255), thickness=cv2.FILLED)
# Compute the centroid for each contour
for contour in sorted_contours:
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
else:
cx, cy = 0, 0
centroids.append((cx, cy))
# Compute the centroid of the centroids
centroid_x = sum(x for x, y in centroids) / 4
centroid_y = sum(y for x, y in centroids) / 4
# Sort the centroids
centroids.sort(key=lambda point: (-math.atan2(point[1] - centroid_y, point[0] - centroid_x)) % (2 * np.pi))
if len(centroids) == 4:
# Create a polygon mask using the sorted centroids
poly_mask = np.zeros_like(flag_mask)
cv2.fillPoly(poly_mask, [np.array(centroids)], 255)
# Mask the plant_mask with poly_mask
mask_plant_plot = cv2.bitwise_and(plant_mask, plant_mask, mask=poly_mask)
# Count the number of black pixels inside the quadrilateral
total_pixels_in_quad = np.prod(poly_mask.shape)
white_pixels_in_quad = np.sum(poly_mask == 255)
black_pixels_in_quad = total_pixels_in_quad - white_pixels_in_quad
# Extract the RGB pixels from the original image using the mask_plant_plot
plant_rgb = cv2.bitwise_and(img, img, mask=mask_plant_plot)
# Draw the bounding quadrilateral
plot_rgb = plant_rgb.copy()
for i in range(4):
cv2.line(plot_rgb, centroids[i], centroids[(i+1)%4], (0, 0, 255), 3)
# Convert the masks to RGB for visualization
flag_mask_rgb = cv2.cvtColor(flag_mask, cv2.COLOR_GRAY2RGB)
orange_color = [255, 165, 0] # RGB value for orange
flag_mask_rgb[np.any(flag_mask_rgb != [0, 0, 0], axis=-1)] = orange_color
plant_mask_rgb = cv2.cvtColor(plant_mask, cv2.COLOR_GRAY2RGB)
mask_plant_plot_rgb = cv2.cvtColor(mask_plant_plot, cv2.COLOR_GRAY2RGB)
bright_green_color = [0, 255, 0]
plant_mask_rgb[np.any(plant_mask_rgb != [0, 0, 0], axis=-1)] = bright_green_color
mask_plant_plot_rgb[np.any(mask_plant_plot_rgb != [0, 0, 0], axis=-1)] = bright_green_color
# Warp the images
plant_rgb_warp = warp_image(plant_rgb, centroids)
plant_mask_warp = warp_image(mask_plant_plot_rgb, centroids)
return flag_mask_rgb, plant_mask_rgb, mask_plant_plot_rgb, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask, mask_plant_plot, black_pixels_in_quad
def calculate_coverage(mask_plant_plot, plant_mask_warp, black_pixels_in_quad):
# Calculate the percentage of white pixels for mask_plant_plot
white_pixels_plot = np.sum(mask_plant_plot > 0)
total_pixels_plot = mask_plant_plot.size
plot_coverage = (white_pixels_plot / black_pixels_in_quad) * 100
# Convert plant_mask_warp to grayscale
plant_mask_warp_gray = cv2.cvtColor(plant_mask_warp, cv2.COLOR_BGR2GRAY)
# Calculate the percentage of white pixels for plant_mask_warp
white_pixels_warp = np.sum(plant_mask_warp_gray > 0)
total_pixels_warp = plant_mask_warp_gray.size
warp_coverage = (white_pixels_warp / total_pixels_warp) * 100
# Calculate the area in cm^2 of the mask_plant_plot
# Given that the real-life size of the square is 2 square meters or 20000 cm^2
plot_area_cm2 = (white_pixels_warp / total_pixels_warp) * 20000
return round(plot_coverage,2), round(warp_coverage,2), round(plot_area_cm2,2)
def get_color_parameters():
# Color pickers for hue component
FL, FL_S, FL_SS = st.columns([2,4,4])
with FL:
flag_lower_hex = st.color_picker("Flag Color Lower Bound Hue", "#33211f")
with FL_S:
flag_lower_sat = st.slider("Flag Lower Bound Saturation", 0, 255, 120)
with FL_SS:
flag_lower_val = st.slider("Flag Lower Bound Value", 0, 255, 150)
FU, FU_S, FU_SS = st.columns([2,4,4])
with FU:
flag_upper_hex = st.color_picker("Flag Color Upper Bound Hue", "#ff7700")
with FU_S:
flag_upper_sat = st.slider("Flag Upper Bound Saturation", 0, 255, 255)
with FU_SS:
flag_upper_val = st.slider("Flag Upper Bound Value", 0, 255, 255)
PL, PL_S, PL_SS = st.columns([2,4,4])
with PL:
plant_lower_hex = st.color_picker("Plant Color Lower Bound Hue", "#504F49")
with PL_S:
plant_lower_sat = st.slider("Plant Lower Bound Saturation", 0, 255, 30)
with PL_SS:
plant_lower_val = st.slider("Plant Lower Bound Value", 0, 255, 30)
PU, PU_S, PU_SS = st.columns([2,4,4])
with PU:
plant_upper_hex = st.color_picker("Plant Color Upper Bound Hue", "#00CFFF")
with PU_S:
plant_upper_sat = st.slider("Plant Upper Bound Saturation", 0, 255, 255)
with PU_SS:
plant_upper_val = st.slider("Plant Upper Bound Value", 0, 255, 255)
# Get HSV bounds using the modified function
flag_lower_bound = hex_to_hsv_bounds(flag_lower_hex, flag_lower_sat, flag_lower_val)
flag_upper_bound = hex_to_hsv_bounds(flag_upper_hex, flag_upper_sat, flag_upper_val)
plant_lower_bound = hex_to_hsv_bounds(plant_lower_hex, plant_lower_sat, plant_lower_val)
plant_upper_bound = hex_to_hsv_bounds(plant_upper_hex, plant_upper_sat, plant_upper_val)
return flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound
def save_img(directory, base_name, mask):
mask_name = os.path.join(directory, os.path.basename(base_name))
cv2.imwrite(mask_name, mask)
def validate_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir, exist_ok=True)
def make_zipfile(source_dir, output_filename):
shutil.make_archive(output_filename, 'zip', source_dir)
return output_filename + '.zip'
def save_uploaded_file(directory, img_file, image=None):
if not os.path.exists(directory):
os.makedirs(directory)
# Assuming the uploaded file is an image
if image is None:
with Image.open(img_file) as image:
full_path = os.path.join(directory, img_file.name)
image.save(full_path, "JPEG")
# Return the full path of the saved image
return full_path
else:
full_path = os.path.join(directory, img_file.name)
image.save(full_path, "JPEG")
return full_path
def create_download_button(dir_to_zip, zip_filename):
zip_filepath = make_zipfile(dir_to_zip, zip_filename)
with open(zip_filepath, 'rb') as f:
bytes_io = BytesIO(f.read())
st.download_button(
label=f"Download Results for{st.session_state['processing_add_on']}",type='primary',
data=bytes_io,
file_name=os.path.basename(zip_filepath),
mime='application/zip'
)
def delete_directory(dir_path):
try:
shutil.rmtree(dir_path)
st.session_state['input_list'] = []
st.session_state['input_list_small'] = []
# st.success(f"Deleted previously uploaded images, making room for new images: {dir_path}")
except OSError as e:
st.error(f"Error: {dir_path} : {e.strerror}")
def clear_image_gallery():
delete_directory(st.session_state['dir_uploaded_images'])
delete_directory(st.session_state['dir_uploaded_images_small'])
validate_dir(st.session_state['dir_uploaded_images'])
validate_dir(st.session_state['dir_uploaded_images_small'])
def reset_demo_images():
st.session_state['dir_input'] = os.path.join(st.session_state['dir_home'],"demo")
st.session_state['input_list'] = [os.path.join(st.session_state['dir_input'], fname) for fname in os.listdir(st.session_state['dir_input']) if fname.endswith(('.jpg', '.jpeg', '.png'))]
n_images = len([f for f in os.listdir(st.session_state['dir_input']) if os.path.isfile(os.path.join(st.session_state['dir_input'], f))])
st.session_state['processing_add_on'] = f" {n_images} Images"
st.session_state['uploader_idk'] += 1
def main():
_, R_coverage, R_plot_area_cm2, R_save = st.columns([5,2,2,2])
img_gallery, img_main, img_seg, img_green, img_warp = st.columns([1,4,2,2,2])
st.session_state['dir_uploaded_images'] = os.path.join(st.session_state['dir_home'],'uploads')
st.session_state['dir_uploaded_images_small'] = os.path.join(st.session_state['dir_home'],'uploads_small')
uploaded_files = st.file_uploader("Upload Images", type=['jpg', 'jpeg'], accept_multiple_files=True, key=st.session_state['uploader_idk'])
if uploaded_files:
# Clear input image gallery and input list
clear_image_gallery()
# Process the new iamges
for uploaded_file in uploaded_files:
file_path = save_uploaded_file(st.session_state['dir_uploaded_images'], uploaded_file)
st.session_state['input_list'].append(file_path)
img = Image.open(file_path)
img.thumbnail((GALLERY_IMAGE_SIZE, GALLERY_IMAGE_SIZE), Image.Resampling.LANCZOS)
file_path_small = save_uploaded_file(st.session_state['dir_uploaded_images_small'], uploaded_file, img)
st.session_state['input_list_small'].append(file_path_small)
print(uploaded_file.name)
# Set the local images to the uploaded images
st.session_state['dir_input'] = st.session_state['dir_uploaded_images']
st.session_state['input_list'] = [os.path.join(st.session_state['dir_input'], fname) for fname in os.listdir(st.session_state['dir_input']) if fname.endswith(('.jpg', '.jpeg', '.png'))]
n_images = len([f for f in os.listdir(st.session_state['dir_input']) if os.path.isfile(os.path.join(st.session_state['dir_input'], f))])
st.session_state['processing_add_on'] = f" {n_images} Images"
uploaded_files = None
st.session_state['uploader_idk'] += 1
st.info(f"Processing **{n_images}** images from {st.session_state['dir_input']}")
if st.session_state['dir_input'] is None:
reset_demo_images()
# dir_input = st.text_input("Input directory for images:", value=os.path.join(st.session_state['dir_home'],"demo"))
dir_output = os.path.join(st.session_state['dir_home'],"demo_out") # st.text_input("Output directory:", value=os.path.join(st.session_state['dir_home'],"demo_out"))
directory_manager = DirectoryManager(dir_output)
directory_manager.create_directories()
run_name = st.text_input("Run name:", value="test")
file_name = os.path.join(directory_manager.data, f"{run_name}.csv")
headers = ['image',"plant_coverage_uncorrected_percen", "plant_coverage_corrected_percent", "plant_area_corrected_cm2"]
file_exists = os.path.isfile(file_name)
st.button("Reset Demo Images", on_click=reset_demo_images)
if len(st.session_state['input_list']) == 0 or st.session_state['input_list'] is None:
st.balloons()
create_download_button(dir_output, run_name)
else:
with img_gallery:
selected_img = image_select("Select an image", st.session_state['input_list'], use_container_width=False)
base_name = os.path.basename(selected_img)
create_download_button(dir_output, run_name)
if selected_img:
selected_img_view = Image.open(selected_img)
with img_main:
st.image(selected_img_view, caption="Selected Image", use_column_width='auto')
flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound = get_color_parameters()
flag_mask, plant_mask, mask_plant_plot, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask_bi, mask_plant_plot_bi, black_pixels_in_quad = process_image(selected_img, flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound, R_save, file_name, file_exists, selected_img, headers, base_name)
if plant_mask_warp is not None:
plot_coverage, warp_coverage, plot_area_cm2 = calculate_coverage(mask_plant_plot_bi, plant_mask_warp, black_pixels_in_quad)
with R_coverage:
st.markdown(f"Uncorrected Plant Coverage: {plot_coverage}%")
with R_plot_area_cm2:
st.markdown(f"Corrected Plant Coverage: {warp_coverage}%")
st.markdown(f"Corrected Plant Area: {plot_area_cm2}cm2")
# Display masks in galleries
with img_seg:
st.image(plant_mask, caption="Plant Mask", use_column_width=True)
st.image(flag_mask, caption="Flag Mask", use_column_width=True)
with img_green:
st.image(mask_plant_plot, caption="Plant Mask Inside Plot", use_column_width=True)
st.image(plant_rgb, caption="Plant Material", use_column_width=True)
with img_warp:
st.image(plot_rgb, caption="Plant Material Inside Plot", use_column_width=True)
st.image(plant_rgb_warp, caption="Plant Mask Inside Plot Warped to Square", use_column_width=True)
# st.image(plot_rgb_warp, caption="Flag Mask", use_column_width=True)
with R_save:
st.write(f"Showing plot outline #{st.session_state.quad_index}")
if st.button('Save'):
# Save the masks to their respective folders
save_img(directory_manager.mask_flag, base_name, flag_mask)
save_img(directory_manager.mask_plant, base_name, plant_mask)
save_img(directory_manager.mask_plant_plot, base_name, mask_plant_plot)
save_img(directory_manager.plant_rgb, base_name, plant_rgb)
save_img(directory_manager.plot_rgb, base_name, plot_rgb)
save_img(directory_manager.plant_rgb_warp, base_name, plant_rgb_warp)
save_img(directory_manager.plant_mask_warp, base_name, plant_mask_warp)
# Append the data to the CSV file
with open(file_name, mode='a', newline='') as file:
writer = csv.writer(file)
# If the file doesn't exist, write the headers
if not file_exists:
writer.writerow(headers)
# Write the data
writer.writerow([f"{base_name}",f"{plot_coverage}", f"{warp_coverage}", f"{plot_area_cm2}"])
# Remove processed image from the list
st.session_state['input_list'].remove(selected_img)
st.session_state['quad_index'] = 0
st.rerun()
else:
with R_save:
if st.button('Save as Failure'):
# Append the data to the CSV file
with open(file_name, mode='a', newline='') as file:
writer = csv.writer(file)
# If the file doesn't exist, write the headers
if not file_exists:
writer.writerow(headers)
# Write the data
writer.writerow([f"{base_name}",f"NA", f"NA", f"NA"])
# Remove processed image from the list
st.session_state['input_list'].remove(selected_img)
st.session_state['quad_index'] = 0
st.rerun()
st.set_page_config(layout="wide", page_title='GreenSight')
if 'dir_home' not in st.session_state:
st.session_state['dir_home'] = os.path.dirname(__file__)
if 'dir_input' not in st.session_state:
st.session_state['dir_input'] = None
if 'processing_add_on' not in st.session_state:
st.session_state['processing_add_on'] = ' 1 Image'
if 'uploader_idk' not in st.session_state:
st.session_state['uploader_idk'] = 1
if 'input_list' not in st.session_state:
st.session_state['input_list'] = []
if 'input_list_small' not in st.session_state:
st.session_state['input_list_small'] = []
if 'dir_uploaded_images' not in st.session_state:
st.session_state['dir_uploaded_images'] = os.path.join(st.session_state['dir_home'],'uploads')
validate_dir(os.path.join(st.session_state['dir_home'],'uploads'))
if 'dir_uploaded_images_small' not in st.session_state:
st.session_state['dir_uploaded_images_small'] = os.path.join(st.session_state['dir_home'],'uploads_small')
validate_dir(os.path.join(st.session_state['dir_home'],'uploads_small'))
if 'keep_quad' not in st.session_state:
st.session_state['keep_quad'] = False
if 'quad_index' not in st.session_state:
st.session_state['quad_index'] = 0
st.title("GreenSight")
st.write("Simple color segmentation app to estimate the vegetation coverage in a plot. Corners of the plot need to be marked with solid, uniforly colored flags.")
st.write("If you exit the session before completing the segmentation of all images, all progress will be lost!")
main()