phonglela / app.py
phongtran
first
f83af8e
import gradio as gr
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import torch
import os
model_path = "vinai/PhoGPT-7B5-Instruct"
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, token=os.environ['HK_TOKEN'])
# config.attn_config['attn_impl'] = 'triton' # Enable if "triton" installed!
model = AutoModelForCausalLM.from_pretrained(
model_path, config=config, torch_dtype=torch.bfloat16, trust_remote_code=True, token=os.environ['HK_TOKEN']
)
# If your GPU does not support bfloat16:
# model = AutoModelForCausalLM.from_pretrained(model_path, config=config, torch_dtype=torch.float16, trust_remote_code=True)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, token=os.environ['HK_TOKEN'])
def answer(input_prompt):
input_ids = tokenizer(input_prompt, return_tensors="pt")
outputs = model.generate(
inputs=input_ids["input_ids"].to("cpu"),
attention_mask=input_ids["attention_mask"].to("cpu"),
do_sample=True,
temperature=1.0,
top_k=50,
top_p=0.9,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
)
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
response = response.split("### Trả lời:")[1]
return response
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()