globe / agents.py
philmui's picture
updated with real business use cases
e42e9ae
##############################################################################
# Agent interfaces that bridges private capability agents (pandas,
# sql, ...), 3rd party plugin agents (search, weather, movie, ...),
# and 3rd party LLMs
#
# @philmui
# Mon May 1 18:34:45 PDT 2023
##############################################################################
from langchain.schema import HumanMessage
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
HumanMessagePromptTemplate
from models import load_chat_agent, load_chained_agent, load_sales_agent, \
load_sqlite_agent, load_book_agent, load_earnings_agent
import openai, numpy as np
from collections import namedtuple
import logging
logger = logging.getLogger(__name__)
# Define a named tuple type '_struct' with fields
_struct = namedtuple('Struct', ['deterministic', 'semantic', 'creative'])
# type of generated answers
GEN_TYPE = _struct('deterministic', 'semantic', 'creative')
# To parse outputs and get structured data back
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
instruct_template = """
Please answer this question clearly with easy to follow reasoning:
{query}
If you don't know the answer, just reply: not available.
"""
instruct_prompt = PromptTemplate(
input_variables=["query"],
template=instruct_template
)
response_schemas = [
ResponseSchema(name="artist",
description="The name of the musical artist"),
ResponseSchema(name="song",
description="The name of the song that the artist plays")
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()
LOCAL_MAGIC_TOKENS = ["my company", "for our team", "our sales", "my team"]
DIGITAL_MAGIC_TOKENS = ["digital media", "our database", "our digital"]
def check_deterministic(sentence, magic_tokens):
return any([t in sentence.lower() for t in magic_tokens])
chat_prompt = ChatPromptTemplate(
messages=[
HumanMessagePromptTemplate.from_template(
"Given a command from the user, extract the artist and \
song names \n{format_instructions}\n{user_prompt}")
],
input_variables=["user_prompt"],
partial_variables={"format_instructions": format_instructions}
)
def chatAgent(chat_message):
try:
agent = load_chat_agent(verbose=True)
output = agent([HumanMessage(content=chat_message)])
except:
output = "Please rephrase and try chat again."
return output
def salesAgent(instruction):
output = ""
try:
agent = load_sales_agent(verbose=True)
output = agent.run(instruction)
print("panda> " + output)
except Exception as e:
logger.error(e)
output = f"Rephrasing your prompt could get better sales results {e}"
return output
def chinookAgent(instruction, model_name):
output = ""
try:
agent = load_sqlite_agent(model_name)
output = agent.run(instruction)
print("chinook> " + output)
except Exception as e:
logger.error(e)
output = "Rephrasing your prompt could get better db results {e}"
return output
def check_semantic(string1, string2):
#
# proper way to do this is to use a
# vector DB (chroma, pinecone, ...)
#
response = openai.Embedding.create(
input=[string1, string2],
engine="text-similarity-davinci-001"
)
embedding_a = response['data'][0]['embedding']
embedding_b = response['data'][1]['embedding']
similarity_score = np.dot(embedding_a, embedding_b)
logger.info(f"similarity: {similarity_score}")
return similarity_score > 0.8
def earningsAgent(query):
output = ""
try:
agent = load_earnings_agent(True)
result = agent({
"query": query
})
logger.info(f"book response: {result['result']}")
output = result['result']
except Exception as e:
logger.error(e)
output = f"Rephrasing your prompt for the book agent{e}"
return output
def bookAgent(query):
output = ""
try:
agent = load_book_agent(True)
result = agent({
"query": query
})
logger.info(f"book response: {result['result']}")
output = result['result']
except Exception as e:
logger.error(e)
output = f"Rephrasing your prompt for the book agent{e}"
return output
def agentController(question_text, model_name):
output = ""
outputType = None
if check_deterministic(question_text, LOCAL_MAGIC_TOKENS):
outputType = GEN_TYPE.deterministic
output += salesAgent(question_text)
print(f"๐Ÿ”น salesAgent: {output}")
elif check_deterministic(question_text, DIGITAL_MAGIC_TOKENS):
outputType = GEN_TYPE.deterministic
output += chinookAgent(question_text, model_name)
print(f"๐Ÿ”น chinookAgent: {output}")
elif check_semantic(question_text, "Salesforce earnings call for Q4 2023"):
outputType = GEN_TYPE.semantic
output += earningsAgent(question_text)
print(f"๐Ÿ”น earningsAgent: {output}")
elif check_semantic(question_text, "how to govern") or \
check_semantic(question_text, "fight a war"):
outputType = GEN_TYPE.semantic
output += bookAgent(question_text)
print(f"๐Ÿ”น bookAgent: {output}")
else: # more creative / complex reasoning
outputType = GEN_TYPE.creative
try:
instruction = instruct_prompt.format(query=question_text)
logger.info(f"instruction: {instruction}")
agent = load_chained_agent(verbose=True, model_name=model_name)
response = agent([instruction])
if response is None or "not available" in response["output"]:
response = ""
else:
output += response['output']
logger.info(f"๐Ÿ”น Steps: {response['intermediate_steps']}")
except Exception as e:
output = "Most likely ran out of tokens ..."
logger.error(e)
return output, outputType