perman2011
commited on
Commit
·
bbfebbe
1
Parent(s):
fe16611
Update DistilBERT.py
Browse files- DistilBERT.py +75 -0
DistilBERT.py
CHANGED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
|
4 |
+
from transformers import DistilBertTokenizer, DistilBertModel
|
5 |
+
import logging
|
6 |
+
logging.basicConfig(level=logging.ERROR)
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
import torch.optim as optim
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
# Điều chỉnh các tham số
|
14 |
+
MAX_LEN = 100
|
15 |
+
TRAIN_BATCH_SIZE = 4
|
16 |
+
VALID_BATCH_SIZE = 4
|
17 |
+
EPOCHS = 1
|
18 |
+
LEARNING_RATE = 1e-05
|
19 |
+
tokenizer_DB = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)
|
20 |
+
|
21 |
+
# Tạo dataframe
|
22 |
+
|
23 |
+
|
24 |
+
# Tạo class
|
25 |
+
class BinaryLabel(Dataset):
|
26 |
+
|
27 |
+
def __init__(self, dataframe, tokenizer, max_len):
|
28 |
+
self.tokenizer = tokenizer_DB
|
29 |
+
self.data = dataframe
|
30 |
+
self.text = dataframe.text
|
31 |
+
self.targets = self.data.label
|
32 |
+
self.max_len = max_len
|
33 |
+
|
34 |
+
def __len__(self):
|
35 |
+
return len(self.text)
|
36 |
+
|
37 |
+
def __getitem__(self, index):
|
38 |
+
text = str(self.text[index])
|
39 |
+
text = " ".join(text.split())
|
40 |
+
|
41 |
+
inputs = self.tokenizer.encode_plus(
|
42 |
+
text,
|
43 |
+
None,
|
44 |
+
add_special_tokens=True,
|
45 |
+
max_length=self.max_len,
|
46 |
+
pad_to_max_length=True,
|
47 |
+
return_token_type_ids=True
|
48 |
+
)
|
49 |
+
ids = inputs['input_ids']
|
50 |
+
mask = inputs['attention_mask']
|
51 |
+
token_type_ids = inputs["token_type_ids"]
|
52 |
+
|
53 |
+
|
54 |
+
return {
|
55 |
+
'ids': torch.tensor(ids, dtype=torch.long),
|
56 |
+
'mask': torch.tensor(mask, dtype=torch.long),
|
57 |
+
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
58 |
+
'targets': torch.tensor(self.targets[index], dtype=torch.float)
|
59 |
+
}
|
60 |
+
|
61 |
+
train_params = {'batch_size': TRAIN_BATCH_SIZE,
|
62 |
+
'shuffle': True,
|
63 |
+
'num_workers': 0
|
64 |
+
}
|
65 |
+
|
66 |
+
test_params = {'batch_size': VALID_BATCH_SIZE,
|
67 |
+
'shuffle': True,
|
68 |
+
'num_workers': 0
|
69 |
+
}
|
70 |
+
|
71 |
+
training_set = BinaryLabel(train_df_DB, tokenizer, MAX_LEN)
|
72 |
+
testing_set = BinaryLabel(test_df_DB, tokenizer, MAX_LEN)
|
73 |
+
|
74 |
+
training_loader = DataLoader(training_set, **train_params)
|
75 |
+
testing_loader = DataLoader(testing_set, **test_params)
|