|
import transformers |
|
import torch |
|
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler |
|
from transformers import DistilBertTokenizer, DistilBertModel |
|
import logging |
|
logging.basicConfig(level=logging.ERROR) |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
import torch.optim as optim |
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
MAX_LEN = 100 |
|
TRAIN_BATCH_SIZE = 4 |
|
VALID_BATCH_SIZE = 4 |
|
EPOCHS = 1 |
|
LEARNING_RATE = 1e-05 |
|
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True) |
|
|
|
|
|
train_df_DB = pd.read_csv('./data/train.csv') |
|
train_df_DB['label'] = train_df_DB.iloc[:, 1:].values.tolist() |
|
test_df_DB = pd.read_csv('./data/test.csv') |
|
test_df_DB = test_df_DB[['text', 'preprocess_sentence', 'label']] |
|
test_df_DB['label'] = test_df_DB.iloc[:, 2:].values.tolist() |
|
|
|
|
|
class BinaryLabel(Dataset): |
|
|
|
def __init__(self, dataframe, tokenizer, max_len): |
|
self.tokenizer = tokenizer |
|
self.data = dataframe |
|
self.text = dataframe.text |
|
self.targets = self.data.label |
|
self.max_len = max_len |
|
|
|
def __len__(self): |
|
return len(self.text) |
|
|
|
def __getitem__(self, index): |
|
text = str(self.text[index]) |
|
text = " ".join(text.split()) |
|
|
|
inputs = self.tokenizer.encode_plus( |
|
text, |
|
None, |
|
add_special_tokens=True, |
|
max_length=self.max_len, |
|
pad_to_max_length=True, |
|
return_token_type_ids=True |
|
) |
|
ids = inputs['input_ids'] |
|
mask = inputs['attention_mask'] |
|
token_type_ids = inputs["token_type_ids"] |
|
|
|
|
|
return { |
|
'ids': torch.tensor(ids, dtype=torch.long), |
|
'mask': torch.tensor(mask, dtype=torch.long), |
|
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long), |
|
'targets': torch.tensor(self.targets[index], dtype=torch.float) |
|
} |
|
|
|
train_params = {'batch_size': TRAIN_BATCH_SIZE, |
|
'shuffle': True, |
|
'num_workers': 0 |
|
} |
|
|
|
test_params = {'batch_size': VALID_BATCH_SIZE, |
|
'shuffle': True, |
|
'num_workers': 0 |
|
} |
|
|
|
training_set = BinaryLabel(train_df_DB, tokenizer, MAX_LEN) |
|
testing_set = BinaryLabel(test_df_DB, tokenizer, MAX_LEN) |
|
|
|
training_loader = DataLoader(training_set, **train_params) |
|
testing_loader = DataLoader(testing_set, **test_params) |
|
|
|
|
|
class DistilBERTClass(torch.nn.Module): |
|
def __init__(self): |
|
super(DistilBERTClass, self).__init__() |
|
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased") |
|
self.pre_classifier = torch.nn.Linear(768, 768) |
|
self.dropout = torch.nn.Dropout(0.1) |
|
self.classifier = torch.nn.Linear(768, 1) |
|
|
|
def forward(self, input_ids, attention_mask, token_type_ids): |
|
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask) |
|
hidden_state = output_1[0] |
|
pooler = hidden_state[:, 0] |
|
pooler = self.pre_classifier(pooler) |
|
pooler = torch.nn.ReLU()(pooler) |
|
pooler = self.dropout(pooler) |
|
output = self.classifier(pooler) |
|
return output |
|
|
|
|
|
|
|
def validation(testing_loader): |
|
model_DB.eval() |
|
fin_targets=[] |
|
fin_outputs=[] |
|
with torch.no_grad(): |
|
for _, data in tqdm(enumerate(testing_loader, 0)): |
|
ids = data['ids'].to(device, dtype = torch.long) |
|
mask = data['mask'].to(device, dtype = torch.long) |
|
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long) |
|
targets = data['targets'].to(device, dtype = torch.float) |
|
outputs = model_DB(ids, mask, token_type_ids) |
|
fin_targets.extend(targets.cpu().detach().numpy().tolist()) |
|
fin_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist()) |
|
return fin_outputs, fin_targets |
|
|
|
|
|
def train(epoch): |
|
model.train() |
|
for _,data in tqdm(enumerate(training_loader, 0)): |
|
ids = data['ids'].to(device, dtype = torch.long) |
|
mask = data['mask'].to(device, dtype = torch.long) |
|
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long) |
|
targets = data['targets'].to(device, dtype = torch.float) |
|
|
|
outputs = model(ids, mask, token_type_ids) |
|
|
|
optimizer.zero_grad() |
|
loss = loss_fn(outputs, targets) |
|
if _%50==0: |
|
print(f'Epoch: {epoch}, Loss: {loss.item()}') |
|
if loss.item() < 0.07: |
|
print(f'Breaking the loop as loss is below 0.07: {loss.item()}') |
|
break |
|
loss.backward() |
|
optimizer.step() |
|
def loss_fn(outputs, targets): |
|
return torch.nn.BCEWithLogitsLoss()(outputs, targets) |
|
|
|
model_DB = DistilBERTClass() |
|
optimizer = torch.optim.Adam(params = model_DB.parameters(), lr=LEARNING_RATE) |
|
|
|
loaded_model_path = './model_DB_1.pt' |
|
model_DB.load_state_dict(torch.load(loaded_model_path, map_location=torch.device('cpu'))) |