task: 'if_nerf' gpus: [0] train_dataset_module: 'lib.datasets.light_stage.can_smpl_demo' train_dataset_path: 'lib/datasets/light_stage/can_smpl_demo.py' test_dataset_module: 'lib.datasets.light_stage.rotate_smpl' test_dataset_path: 'lib/datasets/light_stage/rotate_smpl.py' network_module: 'lib.networks.latent_xyzc' network_path: 'lib/networks/latent_xyzc.py' renderer_module: 'lib.networks.renderer.if_clight_renderer' renderer_path: 'lib/networks/renderer/if_clight_renderer.py' trainer_module: 'lib.train.trainers.if_nerf_clight' trainer_path: 'lib/train/trainers/if_nerf_clight.py' evaluator_module: 'lib.evaluators.if_nerf' evaluator_path: 'lib/evaluators/if_nerf.py' visualizer_module: 'lib.visualizers.if_nerf_demo' visualizer_path: 'lib/visualizers/if_nerf_demo.py' human: 313 train: dataset: Human313_0001_Train batch_size: 1 collator: '' lr: 5e-4 weight_decay: 0 epoch: 400 scheduler: type: 'exponential' gamma: 0.1 decay_epochs: 1000 num_workers: 16 test: dataset: Human313_0001_Test batch_size: 1 collator: '' ep_iter: 500 save_ep: 1000 eval_ep: 1000 # training options netdepth: 8 netwidth: 256 netdepth_fine: 8 netwidth_fine: 256 netchunk: 65536 chunk: 32768 no_batching: True precrop_iters: 500 precrop_frac: 0.5 # network options point_feature: 6 # rendering options use_viewdirs: True i_embed: 0 xyz_res: 10 view_res: 4 raw_noise_std: 0 N_samples: 64 N_importance: 128 N_rand: 1024 near: 1 far: 3 perturb: 1 white_bkgd: False render_views: 50 # data options res: 256 ratio: 0.5 intv: 6 ni: 60 smpl: 'smpl' params: 'params' voxel_size: [0.005, 0.005, 0.005] # dhw # record options log_interval: 1