pengsida commited on
Commit
1ba539f
·
1 Parent(s): 6b5c61d

initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. INSTALL.md +46 -0
  2. LICENSE +18 -0
  3. README.md +202 -12
  4. configs/default.yaml +0 -0
  5. configs/h36m_exp/latent_xyzc_s11g.yaml +28 -0
  6. configs/h36m_exp/latent_xyzc_s9p.yaml +28 -0
  7. configs/monocular_custom.yaml +25 -0
  8. configs/multi_view_custom.yaml +25 -0
  9. configs/nerf/nerf_313.yaml +145 -0
  10. configs/nerf/nerf_315.yaml +18 -0
  11. configs/nerf/nerf_377.yaml +18 -0
  12. configs/nerf/nerf_386.yaml +18 -0
  13. configs/nerf/nerf_387.yaml +18 -0
  14. configs/nerf/nerf_390.yaml +18 -0
  15. configs/nerf/nerf_392.yaml +18 -0
  16. configs/nerf/nerf_393.yaml +18 -0
  17. configs/nerf/nerf_394.yaml +18 -0
  18. configs/neural_volumes/neural_volumes_313.yaml +94 -0
  19. configs/neural_volumes/neural_volumes_315.yaml +94 -0
  20. configs/neural_volumes/neural_volumes_377.yaml +94 -0
  21. configs/neural_volumes/neural_volumes_386.yaml +94 -0
  22. configs/neural_volumes/neural_volumes_387.yaml +94 -0
  23. configs/neural_volumes/neural_volumes_390.yaml +95 -0
  24. configs/neural_volumes/neural_volumes_392.yaml +94 -0
  25. configs/neural_volumes/neural_volumes_393.yaml +94 -0
  26. configs/neural_volumes/neural_volumes_394.yaml +94 -0
  27. configs/snapshot_exp/snapshot_f1c.yaml +20 -0
  28. configs/snapshot_exp/snapshot_f3c.yaml +134 -0
  29. configs/snapshot_exp/snapshot_f4c.yaml +21 -0
  30. configs/snapshot_exp/snapshot_f6p.yaml +20 -0
  31. configs/snapshot_exp/snapshot_f7p.yaml +20 -0
  32. configs/snapshot_exp/snapshot_f8p.yaml +20 -0
  33. configs/snapshot_exp/snapshot_m2c.yaml +20 -0
  34. configs/snapshot_exp/snapshot_m2o.yaml +20 -0
  35. configs/snapshot_exp/snapshot_m3c.yaml +20 -0
  36. configs/snapshot_exp/snapshot_m5o.yaml +20 -0
  37. configs/zju_mocap_exp/latent_xyzc_313.yaml +152 -0
  38. configs/zju_mocap_exp/latent_xyzc_315.yaml +21 -0
  39. configs/zju_mocap_exp/latent_xyzc_377.yaml +21 -0
  40. configs/zju_mocap_exp/latent_xyzc_386.yaml +21 -0
  41. configs/zju_mocap_exp/latent_xyzc_387.yaml +21 -0
  42. configs/zju_mocap_exp/latent_xyzc_390.yaml +23 -0
  43. configs/zju_mocap_exp/latent_xyzc_392.yaml +21 -0
  44. configs/zju_mocap_exp/latent_xyzc_393.yaml +21 -0
  45. configs/zju_mocap_exp/latent_xyzc_394.yaml +21 -0
  46. configs/zju_mocap_exp/latent_xyzc_395.yaml +21 -0
  47. configs/zju_mocap_exp/latent_xyzc_396.yaml +22 -0
  48. configs/zju_mocap_exp/xyzc_rotate_demo_313.yaml +93 -0
  49. configs/zju_mocap_frame1_exp/latent_xyzc_313_ni1.yaml +21 -0
  50. configs/zju_mocap_frame1_exp/latent_xyzc_315_ni1.yaml +21 -0
INSTALL.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Set up the python environment
2
+
3
+ ```
4
+ conda create -n neuralbody python=3.7
5
+ conda activate neuralbody
6
+
7
+ # make sure that the pytorch cuda is consistent with the system cuda
8
+ # e.g., if your system cuda is 10.0, install torch 1.4 built from cuda 10.0
9
+ pip install torch==1.4.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html
10
+
11
+ pip install -r requirements.txt
12
+
13
+ # install spconv
14
+ cd
15
+ git clone https://github.com/traveller59/spconv --recursive
16
+ cd spconv
17
+ git checkout abf0acf30f5526ea93e687e3f424f62d9cd8313a
18
+ git submodule update --init --recursive
19
+ export CUDA_HOME="/usr/local/cuda-10.0"
20
+ python setup.py bdist_wheel
21
+ cd dist
22
+ pip install spconv-1.2.1-cp36-cp36m-linux_x86_64.whl
23
+ ```
24
+
25
+ ### Set up datasets
26
+
27
+ #### People-Snapshot dataset
28
+
29
+ 1. Download the People-Snapshot dataset [here](https://graphics.tu-bs.de/people-snapshot).
30
+ 2. Process the People-Snapshot dataset using the [script](https://github.com/zju3dv/neuralbody#process-people-snapshot).
31
+ 3. Create a soft link:
32
+ ```
33
+ ROOT=/path/to/neuralbody
34
+ cd $ROOT/data
35
+ ln -s /path/to/people_snapshot people_snapshot
36
+ ```
37
+
38
+ #### ZJU-Mocap dataset
39
+
40
+ 1. If someone wants to download the ZJU-Mocap dataset, please fill in the [agreement](https://zjueducn-my.sharepoint.com/:b:/g/personal/pengsida_zju_edu_cn/EUPiybrcFeNEhdQROx4-LNEBm4lzLxDwkk1SBcNWFgeplA?e=BGDiQh), and email me ([email protected]) and cc Xiaowei Zhou ([email protected]) to request the download link.
41
+ 2. Create a soft link:
42
+ ```
43
+ ROOT=/path/to/neuralbody
44
+ cd $ROOT/data
45
+ ln -s /path/to/zju_mocap zju_mocap
46
+ ```
LICENSE ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ////////////////////////////////////////////////////////////////////////////
2
+ // Copyright 2020-2021 the 3D Vision Group at the State Key Lab of CAD&CG,
3
+ // Zhejiang University. All Rights Reserved.
4
+ //
5
+ // For more information see <https://github.com/zju3dv/neuralbody>
6
+ // If you use this code, please cite the corresponding publications as
7
+ // listed on the above website.
8
+ //
9
+ // Permission to use, copy, modify and distribute this software and its
10
+ // documentation for educational, research and non-profit purposes only.
11
+ // Any modification based on this work must be open source and prohibited
12
+ // for commercial use.
13
+ // You must retain, in the source form of any derivative works that you
14
+ // distribute, all copyright, patent, trademark, and attribution notices
15
+ // from the source form of this work.
16
+ //
17
+ //
18
+ ////////////////////////////////////////////////////////////////////////////
README.md CHANGED
@@ -1,12 +1,202 @@
1
- ---
2
- title: NeuralBody
3
- emoji: 📚
4
- colorFrom: yellow
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 3.0.10
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ **News**
2
+
3
+ * `05/17/2021` To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at [here](https://github.com/zju3dv/neuralbody/blob/master/supplementary_material.md#results-of-other-methods-on-zju-mocap), including Neural Volumes, Multi-view Neural Human Rendering, and Deferred Neural Human Rendering.
4
+ * `05/13/2021` To make the following works easier compare with our model, we save our rendering results of ZJU-MoCap at [here](https://zjueducn-my.sharepoint.com/:u:/g/personal/pengsida_zju_edu_cn/Ea3VOUy204VAiVJ-V-OGd9YBxdhbtfpS-U6icD_rDq0mUQ?e=cAcylK) and write a [document](supplementary_material.md) that describes the training and test protocols.
5
+ * `05/12/2021` The code supports the test and visualization on unseen human poses.
6
+ * `05/12/2021` We update the ZJU-MoCap dataset with better fitted SMPL using [EasyMocap](https://github.com/zju3dv/EasyMocap). We also release a [website](https://zju3dv.github.io/zju_mocap/) for visualization. Please see [here](https://github.com/zju3dv/neuralbody#potential-problems-of-provided-smpl-parameters) for the usage of provided smpl parameters.
7
+
8
+ # Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans
9
+ ### [Project Page](https://zju3dv.github.io/neuralbody) | [Video](https://www.youtube.com/watch?v=BPCAMeBCE-8) | [Paper](https://arxiv.org/pdf/2012.15838.pdf) | [Data](https://github.com/zju3dv/neuralbody/blob/master/INSTALL.md#zju-mocap-dataset)
10
+
11
+ ![monocular](https://zju3dv.github.io/neuralbody/images/monocular.gif)
12
+
13
+ > [Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans](https://arxiv.org/pdf/2012.15838.pdf)
14
+ > Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, Xiaowei Zhou
15
+ > CVPR 2021
16
+
17
+ Any questions or discussions are welcomed!
18
+
19
+ ## Installation
20
+
21
+ Please see [INSTALL.md](INSTALL.md) for manual installation.
22
+
23
+ ### Installation using docker
24
+
25
+ Please see [docker/README.md](docker/README.md).
26
+
27
+ Thanks to [Zhaoyi Wan](https://github.com/wanzysky) for providing the docker implementation.
28
+
29
+ ## Run the code on the custom dataset
30
+
31
+ Please see [CUSTOM](tools/custom).
32
+
33
+ ## Run the code on People-Snapshot
34
+
35
+ Please see [INSTALL.md](INSTALL.md) to download the dataset.
36
+
37
+ We provide the pretrained models at [here](https://zjueducn-my.sharepoint.com/:f:/g/personal/pengsida_zju_edu_cn/Enn43YWDHwBEg-XBqnetFYcBLr3cItZ0qUFU-oKUpDHKXw?e=FObjE9).
38
+
39
+ ### Process People-Snapshot
40
+
41
+ We already provide some processed data. If you want to process more videos of People-Snapshot, you could use [tools/process_snapshot.py](tools/process_snapshot.py).
42
+
43
+ You can also visualize smpl parameters of People-Snapshot with [tools/vis_snapshot.py](tools/vis_snapshot.py).
44
+
45
+ ### Visualization on People-Snapshot
46
+
47
+ Take the visualization on `female-3-casual` as an example. The command lines for visualization are recorded in [visualize.sh](visualize.sh).
48
+
49
+ 1. Download the corresponding pretrained model and put it to `$ROOT/data/trained_model/if_nerf/female3c/latest.pth`.
50
+ 2. Visualization:
51
+ * Visualize novel views of single frame
52
+ ```
53
+ python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_novel_view True num_render_views 144
54
+ ```
55
+
56
+ ![monocular](https://zju3dv.github.io/neuralbody/images/monocular_render.gif)
57
+
58
+ * Visualize views of dynamic humans with fixed camera
59
+ ```
60
+ python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_novel_pose True
61
+ ```
62
+
63
+ ![monocular](https://zju3dv.github.io/neuralbody/images/monocular_perform.gif)
64
+
65
+ * Visualize mesh
66
+ ```
67
+ # generate meshes
68
+ python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_mesh True train.num_workers 0
69
+ # visualize a specific mesh
70
+ python tools/render_mesh.py --exp_name female3c --dataset people_snapshot --mesh_ind 226
71
+ ```
72
+
73
+ ![monocular](https://zju3dv.github.io/neuralbody/images/monocular_mesh.gif)
74
+
75
+ 3. The results of visualization are located at `$ROOT/data/render/female3c` and `$ROOT/data/perform/female3c`.
76
+
77
+ ### Training on People-Snapshot
78
+
79
+ Take the training on `female-3-casual` as an example. The command lines for training are recorded in [train.sh](train.sh).
80
+
81
+ 1. Train:
82
+ ```
83
+ # training
84
+ python train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False
85
+ # distributed training
86
+ python -m torch.distributed.launch --nproc_per_node=4 train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False gpus "0, 1, 2, 3" distributed True
87
+ ```
88
+ 2. Train with white background:
89
+ ```
90
+ # training
91
+ python train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False white_bkgd True
92
+ ```
93
+ 3. Tensorboard:
94
+ ```
95
+ tensorboard --logdir data/record/if_nerf
96
+ ```
97
+
98
+ ## Run the code on ZJU-MoCap
99
+
100
+ Please see [INSTALL.md](INSTALL.md) to download the dataset.
101
+
102
+ We provide the pretrained models at [here](https://zjueducn-my.sharepoint.com/:f:/g/personal/pengsida_zju_edu_cn/Enn43YWDHwBEg-XBqnetFYcBLr3cItZ0qUFU-oKUpDHKXw?e=FObjE9).
103
+
104
+ ### Potential problems of provided smpl parameters
105
+
106
+ 1. The newly fitted parameters locate in `new_params`. Currently, the released pretrained models are trained on previously fitted parameters, which locate in `params`.
107
+ 2. The smpl parameters of ZJU-MoCap have different definition from the one of MPI's smplx.
108
+ * If you want to extract vertices from the provided smpl parameters, please use `zju_smpl/extract_vertices.py`.
109
+ * The reason that we use the current definition is described at [here](https://github.com/zju3dv/EasyMocap/blob/master/doc/02_output.md#attention-for-smplsmpl-x-users).
110
+
111
+ It is okay to train Neural Body with smpl parameters fitted by smplx.
112
+
113
+ ### Test on ZJU-MoCap
114
+
115
+ The command lines for test are recorded in [test.sh](test.sh).
116
+
117
+ Take the test on `sequence 313` as an example.
118
+
119
+ 1. Download the corresponding pretrained model and put it to `$ROOT/data/trained_model/if_nerf/xyzc_313/latest.pth`.
120
+ 2. Test on training human poses:
121
+ ```
122
+ python run.py --type evaluate --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313
123
+ ```
124
+ 3. Test on unseen human poses:
125
+ ```
126
+ python run.py --type evaluate --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 test_novel_pose True
127
+ ```
128
+
129
+ ### Visualization on ZJU-MoCap
130
+
131
+ Take the visualization on `sequence 313` as an example. The command lines for visualization are recorded in [visualize.sh](visualize.sh).
132
+
133
+ 1. Download the corresponding pretrained model and put it to `$ROOT/data/trained_model/if_nerf/xyzc_313/latest.pth`.
134
+ 2. Visualization:
135
+ * Visualize novel views of single frame
136
+ ```
137
+ python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_view True
138
+ ```
139
+ ![zju_mocap](https://zju3dv.github.io/neuralbody/images/zju_mocap_render_313.gif)
140
+
141
+ * Visualize novel views of single frame by rotating the SMPL model
142
+ ```
143
+ python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_view True num_render_views 100
144
+ ```
145
+ ![zju_mocap](https://zju3dv.github.io/neuralbody/images/rotate_smpl.gif)
146
+
147
+ * Visualize views of dynamic humans with fixed camera
148
+ ```
149
+ python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_pose True num_render_frame 1000 num_render_views 1
150
+ ```
151
+ ![zju_mocap](https://zju3dv.github.io/neuralbody/images/zju_mocap_perform_fixed_313.gif)
152
+
153
+ * Visualize views of dynamic humans with rotated camera
154
+ ```
155
+ python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_pose True num_render_frame 1000
156
+ ```
157
+ ![zju_mocap](https://zju3dv.github.io/neuralbody/images/zju_mocap_perform_313.gif)
158
+
159
+ * Visualize mesh
160
+ ```
161
+ # generate meshes
162
+ python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_mesh True train.num_workers 0
163
+ # visualize a specific mesh
164
+ python tools/render_mesh.py --exp_name xyzc_313 --dataset zju_mocap --mesh_ind 0
165
+ ```
166
+ ![zju_mocap](https://zju3dv.github.io/neuralbody/images/zju_mocap_mesh.gif)
167
+
168
+ 4. The results of visualization are located at `$ROOT/data/render/xyzc_313` and `$ROOT/data/perform/xyzc_313`.
169
+
170
+ ### Training on ZJU-MoCap
171
+
172
+ Take the training on `sequence 313` as an example. The command lines for training are recorded in [train.sh](train.sh).
173
+
174
+ 1. Train:
175
+ ```
176
+ # training
177
+ python train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False
178
+ # distributed training
179
+ python -m torch.distributed.launch --nproc_per_node=4 train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False gpus "0, 1, 2, 3" distributed True
180
+ ```
181
+ 2. Train with white background:
182
+ ```
183
+ # training
184
+ python train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False white_bkgd True
185
+ ```
186
+ 3. Tensorboard:
187
+ ```
188
+ tensorboard --logdir data/record/if_nerf
189
+ ```
190
+
191
+ ## Citation
192
+
193
+ If you find this code useful for your research, please use the following BibTeX entry.
194
+
195
+ ```
196
+ @inproceedings{peng2021neural,
197
+ title={Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans},
198
+ author={Peng, Sida and Zhang, Yuanqing and Xu, Yinghao and Wang, Qianqian and Shuai, Qing and Bao, Hujun and Zhou, Xiaowei},
199
+ booktitle={CVPR},
200
+ year={2021}
201
+ }
202
+ ```
configs/default.yaml ADDED
File without changes
configs/h36m_exp/latent_xyzc_s11g.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/h36m/S11/Greeting'
8
+ human: 'S11'
9
+ ann_file: 'data/h36m/S11/Greeting/annots.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/h36m/S11/Greeting'
14
+ human: 'S11'
15
+ ann_file: 'data/h36m/S11/Greeting/annots.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ H: 1002
20
+ W: 1000
21
+ ratio: 1.
22
+ training_view: [0, 1, 2, 3]
23
+ begin_ith_frame: 1200
24
+ num_train_frame: 400
25
+ smpl: 'smpl'
26
+ vertices: 'vertices'
27
+ params: 'params'
28
+ big_box: True
configs/h36m_exp/latent_xyzc_s9p.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/h36m/S9/Posing'
8
+ human: 'S9'
9
+ ann_file: 'data/h36m/S9/Posing/annots.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/h36m/S9/Posing'
14
+ human: 'S9'
15
+ ann_file: 'data/h36m/S9/Posing/annots.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ H: 1002
20
+ W: 1000
21
+ ratio: 1.
22
+ training_view: [0, 1, 2, 3]
23
+ begin_ith_frame: 1000
24
+ num_train_frame: 300
25
+ smpl: 'smpl'
26
+ vertices: 'vertices'
27
+ params: 'params'
28
+ big_box: True
configs/monocular_custom.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'path/to/custom_data',
8
+ human: 'custom',
9
+ ann_file: 'path/to/custom_data/params.npy',
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'path/to/custom_data',
14
+ human: 'custom',
15
+ ann_file: 'path/to/custom_data/params.npy',
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ training_view: [0, 6, 12, 18]
21
+ num_train_frame: 300
22
+ smpl: 'smpl'
23
+ vertices: 'vertices'
24
+ params: 'params'
25
+ big_box: True
configs/multi_view_custom.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'path/to/custom_data',
8
+ human: 'custom',
9
+ ann_file: 'path/to/custom_data/annots.npy',
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'path/to/custom_data',
14
+ human: 'custom',
15
+ ann_file: 'path/to/custom_data/annots.npy',
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ training_view: [0, 6, 12, 18]
21
+ num_train_frame: 300
22
+ smpl: 'smpl'
23
+ vertices: 'vertices'
24
+ params: 'params'
25
+ big_box: True
configs/nerf/nerf_313.yaml ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.multi_view_dataset'
5
+ train_dataset_path: 'lib/datasets/light_stage/multi_view_dataset.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.multi_view_dataset'
7
+ test_dataset_path: 'lib/datasets/light_stage/multi_view_dataset.py'
8
+
9
+ network_module: 'lib.networks.nerf'
10
+ network_path: 'lib/networks/nerf.py'
11
+ renderer_module: 'lib.networks.renderer.volume_renderer'
12
+ renderer_path: 'lib/networks/renderer/volume_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.nerf.py'
15
+ trainer_path: 'lib/train/trainers/nerf.py'
16
+
17
+ evaluator_module: 'lib.evaluators.if_nerf'
18
+ evaluator_path: 'lib/evaluators/if_nerf.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 313
24
+
25
+ train_dataset:
26
+ data_root: 'data/zju_mocap/CoreView_313'
27
+ human: 'CoreView_313'
28
+ ann_file: 'data/zju_mocap/CoreView_313/annots.npy'
29
+ split: 'train'
30
+
31
+ test_dataset:
32
+ data_root: 'data/zju_mocap/CoreView_313'
33
+ human: 'CoreView_313'
34
+ ann_file: 'data/zju_mocap/CoreView_313/annots.npy'
35
+ split: 'test'
36
+
37
+ train:
38
+ batch_size: 1
39
+ collator: ''
40
+ lr: 5e-4
41
+ weight_decay: 0
42
+ epoch: 400
43
+ scheduler:
44
+ type: 'exponential'
45
+ gamma: 0.1
46
+ decay_epochs: 1000
47
+ num_workers: 16
48
+
49
+ test:
50
+ sampler: 'FrameSampler'
51
+ batch_size: 1
52
+ collator: ''
53
+
54
+ ep_iter: 500
55
+ save_ep: 1000
56
+ eval_ep: 1000
57
+
58
+ # training options
59
+ netdepth: 8
60
+ netwidth: 256
61
+ netdepth_fine: 8
62
+ netwidth_fine: 256
63
+ netchunk: 65536
64
+ chunk: 32768
65
+
66
+ no_batching: True
67
+
68
+ # rendering options
69
+ use_viewdirs: True
70
+ i_embed: 0
71
+ xyz_res: 10
72
+ view_res: 4
73
+ raw_noise_std: 0
74
+ lindisp: False
75
+
76
+ N_samples: 64
77
+ N_importance: 128
78
+ N_rand: 1024
79
+
80
+ perturb: 1
81
+ white_bkgd: False
82
+
83
+ num_render_views: 50
84
+
85
+ # data options
86
+ ratio: 0.5
87
+ num_train_frame: 1
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
95
+
96
+
97
+ novel_view_cfg:
98
+ train_dataset_module: 'lib.datasets.light_stage.multi_view_demo_dataset'
99
+ train_dataset_path: 'lib/datasets/light_stage/multi_view_demo_dataset.py'
100
+ test_dataset_module: 'lib.datasets.light_stage.multi_view_demo_dataset'
101
+ test_dataset_path: 'lib/datasets/light_stage/multi_view_demo_dataset.py'
102
+
103
+ renderer_module: 'lib.networks.renderer.volume_renderer'
104
+ renderer_path: 'lib/networks/renderer/volume_renderer.py'
105
+
106
+ visualizer_module: 'lib.visualizers.if_nerf_demo'
107
+ visualizer_path: 'lib/visualizers/if_nerf_demo.py'
108
+
109
+ test:
110
+ sampler: ''
111
+
112
+ novel_pose_cfg:
113
+ train_dataset_module: 'lib.datasets.light_stage.multi_view_perform_dataset'
114
+ train_dataset_path: 'lib/datasets/light_stage/multi_view_perform_dataset.py'
115
+ test_dataset_module: 'lib.datasets.light_stage.multi_view_perform_dataset'
116
+ test_dataset_path: 'lib/datasets/light_stage/multi_view_perform_dataset.py'
117
+
118
+ renderer_module: 'lib.networks.renderer.volume_renderer'
119
+ renderer_path: 'lib/networks/renderer/volume_renderer.py'
120
+
121
+ visualizer_module: 'lib.visualizers.if_nerf_perform'
122
+ visualizer_path: 'lib/visualizers/if_nerf_perform.py'
123
+
124
+ test:
125
+ sampler: ''
126
+
127
+ mesh_cfg:
128
+ train_dataset_module: 'lib.datasets.light_stage.multi_view_mesh_dataset'
129
+ train_dataset_path: 'lib/datasets/light_stage/multi_view_mesh_dataset.py'
130
+ test_dataset_module: 'lib.datasets.light_stage.multi_view_mesh_dataset'
131
+ test_dataset_path: 'lib/datasets/light_stage/multi_view_mesh_dataset.py'
132
+
133
+ network_module: 'lib.networks.latent_xyzc'
134
+ network_path: 'lib/networks/latent_xyzc.py'
135
+ renderer_module: 'lib.networks.renderer.volume_mesh_renderer'
136
+ renderer_path: 'lib/networks/renderer/volume_mesh_renderer.py'
137
+
138
+ visualizer_module: 'lib.visualizers.if_nerf_mesh'
139
+ visualizer_path: 'lib/visualizers/if_nerf_mesh.py'
140
+
141
+ mesh_th: 5
142
+
143
+ test:
144
+ sampler: 'FrameSampler'
145
+ frame_sampler_interval: 1
configs/nerf/nerf_315.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/nerf/nerf_313.yaml'
5
+
6
+ human: 315
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_315'
10
+ human: 'CoreView_315'
11
+ ann_file: 'data/zju_mocap/CoreView_315/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_315'
16
+ human: 'CoreView_315'
17
+ ann_file: 'data/zju_mocap/CoreView_315/annots.npy'
18
+ split: 'test'
configs/nerf/nerf_377.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/nerf/nerf_313.yaml'
5
+
6
+ human: 377
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_377'
10
+ human: 'CoreView_377'
11
+ ann_file: 'data/zju_mocap/CoreView_377/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_377'
16
+ human: 'CoreView_377'
17
+ ann_file: 'data/zju_mocap/CoreView_377/annots.npy'
18
+ split: 'test'
configs/nerf/nerf_386.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/nerf/nerf_313.yaml'
5
+
6
+ human: 386
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_386'
10
+ human: 'CoreView_386'
11
+ ann_file: 'data/zju_mocap/CoreView_386/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_386'
16
+ human: 'CoreView_386'
17
+ ann_file: 'data/zju_mocap/CoreView_386/annots.npy'
18
+ split: 'test'
configs/nerf/nerf_387.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/nerf/nerf_313.yaml'
5
+
6
+ human: 387
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_387'
10
+ human: 'CoreView_387'
11
+ ann_file: 'data/zju_mocap/CoreView_387/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_387'
16
+ human: 'CoreView_387'
17
+ ann_file: 'data/zju_mocap/CoreView_387/annots.npy'
18
+ split: 'test'
configs/nerf/nerf_390.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/nerf/nerf_313.yaml'
5
+
6
+ human: 390
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_390'
10
+ human: 'CoreView_390'
11
+ ann_file: 'data/zju_mocap/CoreView_390/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_390'
16
+ human: 'CoreView_390'
17
+ ann_file: 'data/zju_mocap/CoreView_390/annots.npy'
18
+ split: 'test'
configs/nerf/nerf_392.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/nerf/nerf_313.yaml'
5
+
6
+ human: 392
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_392'
10
+ human: 'CoreView_392'
11
+ ann_file: 'data/zju_mocap/CoreView_392/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_392'
16
+ human: 'CoreView_392'
17
+ ann_file: 'data/zju_mocap/CoreView_392/annots.npy'
18
+ split: 'test'
configs/nerf/nerf_393.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/nerf/nerf_313.yaml'
5
+
6
+ human: 393
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_393'
10
+ human: 'CoreView_393'
11
+ ann_file: 'data/zju_mocap/CoreView_393/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_393'
16
+ human: 'CoreView_393'
17
+ ann_file: 'data/zju_mocap/CoreView_393/annots.npy'
18
+ split: 'test'
configs/nerf/nerf_394.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/nerf/nerf_313.yaml'
5
+
6
+ human: 394
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_394'
10
+ human: 'CoreView_394'
11
+ ann_file: 'data/zju_mocap/CoreView_394/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_394'
16
+ human: 'CoreView_394'
17
+ ann_file: 'data/zju_mocap/CoreView_394/annots.npy'
18
+ split: 'test'
configs/neural_volumes/neural_volumes_313.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 313
24
+
25
+ train:
26
+ dataset: Human313_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human313_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ ni: 60
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
configs/neural_volumes/neural_volumes_315.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 315
24
+
25
+ train:
26
+ dataset: Human315_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human315_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ ni: 400
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
configs/neural_volumes/neural_volumes_377.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 377
24
+
25
+ train:
26
+ dataset: Human377_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human377_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ ni: 300
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
configs/neural_volumes/neural_volumes_386.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 386
24
+
25
+ train:
26
+ dataset: Human386_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human386_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ ni: 300
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
configs/neural_volumes/neural_volumes_387.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 387
24
+
25
+ train:
26
+ dataset: Human387_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human387_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ ni: 300
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
configs/neural_volumes/neural_volumes_390.yaml ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 390
24
+
25
+ train:
26
+ dataset: Human390_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human390_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ begin_i: 700
88
+ ni: 300
89
+ smpl: 'smpl'
90
+ params: 'params'
91
+
92
+ voxel_size: [0.005, 0.005, 0.005] # dhw
93
+
94
+ # record options
95
+ log_interval: 1
configs/neural_volumes/neural_volumes_392.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 392
24
+
25
+ train:
26
+ dataset: Human392_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human392_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ ni: 300
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
configs/neural_volumes/neural_volumes_393.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 393
24
+
25
+ train:
26
+ dataset: Human393_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human393_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ ni: 300
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
configs/neural_volumes/neural_volumes_394.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.can_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.neural_volume'
18
+ evaluator_path: 'lib/evaluators/neural_volume.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 394
24
+
25
+ train:
26
+ dataset: Human394_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human394_0001_Test
40
+ sampler: 'FrameSampler'
41
+ batch_size: 1
42
+ collator: ''
43
+
44
+ ep_iter: 500
45
+ save_ep: 1000
46
+ eval_ep: 1000
47
+
48
+ # training options
49
+ netdepth: 8
50
+ netwidth: 256
51
+ netdepth_fine: 8
52
+ netwidth_fine: 256
53
+ netchunk: 65536
54
+ chunk: 32768
55
+
56
+ no_batching: True
57
+
58
+ precrop_iters: 500
59
+ precrop_frac: 0.5
60
+
61
+ # network options
62
+ point_feature: 6
63
+
64
+ # rendering options
65
+ use_viewdirs: True
66
+ i_embed: 0
67
+ xyz_res: 10
68
+ view_res: 4
69
+ raw_noise_std: 0
70
+
71
+ N_samples: 64
72
+ N_importance: 128
73
+ N_rand: 1024
74
+
75
+ near: 1
76
+ far: 3
77
+
78
+ perturb: 1
79
+ white_bkgd: False
80
+
81
+ render_views: 50
82
+
83
+ # data options
84
+ res: 256
85
+ ratio: 0.5
86
+ intv: 6
87
+ ni: 300
88
+ smpl: 'smpl'
89
+ params: 'params'
90
+
91
+ voxel_size: [0.005, 0.005, 0.005] # dhw
92
+
93
+ # record options
94
+ log_interval: 1
configs/snapshot_exp/snapshot_f1c.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/female-1-casual'
8
+ human: 'female-1-casual'
9
+ ann_file: 'data/people_snapshot/female-1-casual/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/female-1-casual'
14
+ human: 'female-1-casual'
15
+ ann_file: 'data/people_snapshot/female-1-casual/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 250
configs/snapshot_exp/snapshot_f3c.yaml ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.monocular_dataset'
5
+ train_dataset_path: 'lib/datasets/light_stage/monocular_dataset.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.monocular_dataset'
7
+ test_dataset_path: 'lib/datasets/light_stage/monocular_dataset.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.if_nerf'
18
+ evaluator_path: 'lib/evaluators/if_nerf.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ train_dataset:
24
+ data_root: 'data/people_snapshot/female-3-casual'
25
+ human: 'female-3-casual'
26
+ ann_file: 'data/people_snapshot/female-3-casual/params.npy'
27
+ split: 'train'
28
+
29
+ test_dataset:
30
+ data_root: 'data/people_snapshot/female-3-casual'
31
+ human: 'female-3-casual'
32
+ ann_file: 'data/people_snapshot/female-3-casual/params.npy'
33
+ split: 'test'
34
+
35
+ train:
36
+ batch_size: 1
37
+ collator: ''
38
+ lr: 5e-4
39
+ weight_decay: 0
40
+ epoch: 400
41
+ scheduler:
42
+ type: 'exponential'
43
+ gamma: 0.1
44
+ decay_epochs: 1000
45
+ num_workers: 16
46
+
47
+ test:
48
+ batch_size: 1
49
+ collator: ''
50
+
51
+ ep_iter: 500
52
+ save_ep: 100
53
+ eval_ep: 1000
54
+
55
+ # rendering options
56
+ i_embed: 0
57
+ xyz_res: 10
58
+ view_res: 4
59
+ raw_noise_std: 0
60
+
61
+ N_samples: 64
62
+ N_importance: 128
63
+ N_rand: 1024
64
+
65
+ perturb: 1
66
+ white_bkgd: False
67
+
68
+ num_render_views: 50
69
+
70
+ # data options
71
+ H: 1080
72
+ W: 1080
73
+ ratio: 1.
74
+ num_train_frame: 230
75
+
76
+ voxel_size: [0.005, 0.005, 0.005] # dhw
77
+
78
+ # record options
79
+ log_interval: 1
80
+
81
+
82
+ novel_view_cfg:
83
+ train_dataset_module: 'lib.datasets.light_stage.monocular_demo_dataset'
84
+ train_dataset_path: 'lib/datasets/light_stage/monocular_demo_dataset.py'
85
+ test_dataset_module: 'lib.datasets.light_stage.monocular_demo_dataset'
86
+ test_dataset_path: 'lib/datasets/light_stage/monocular_demo_dataset.py'
87
+
88
+ renderer_module: 'lib.networks.renderer.if_clight_renderer_msk'
89
+ renderer_path: 'lib/networks/renderer/if_clight_renderer_msk.py'
90
+
91
+ visualizer_module: 'lib.visualizers.if_nerf_demo'
92
+ visualizer_path: 'lib/visualizers/if_nerf_demo.py'
93
+
94
+ ratio: 0.5
95
+
96
+ test:
97
+ sampler: ''
98
+
99
+ novel_pose_cfg:
100
+ train_dataset_module: 'lib.datasets.light_stage.monocular_dataset'
101
+ train_dataset_path: 'lib/datasets/light_stage/monocular_dataset.py'
102
+ test_dataset_module: 'lib.datasets.light_stage.monocular_dataset'
103
+ test_dataset_path: 'lib/datasets/light_stage/monocular_dataset.py'
104
+
105
+ renderer_module: 'lib.networks.renderer.if_clight_renderer_msk'
106
+ renderer_path: 'lib/networks/renderer/if_clight_renderer_msk.py'
107
+
108
+ visualizer_module: 'lib.visualizers.if_nerf_perform'
109
+ visualizer_path: 'lib/visualizers/if_nerf_perform.py'
110
+
111
+ ratio: 0.5
112
+
113
+ test:
114
+ sampler: ''
115
+
116
+ mesh_cfg:
117
+ train_dataset_module: 'lib.datasets.light_stage.monocular_mesh_dataset'
118
+ train_dataset_path: 'lib/datasets/light_stage/monocular_mesh_dataset.py'
119
+ test_dataset_module: 'lib.datasets.light_stage.monocular_mesh_dataset'
120
+ test_dataset_path: 'lib/datasets/light_stage/monocular_mesh_dataset.py'
121
+
122
+ network_module: 'lib.networks.latent_xyzc'
123
+ network_path: 'lib/networks/latent_xyzc.py'
124
+ renderer_module: 'lib.networks.renderer.if_mesh_renderer'
125
+ renderer_path: 'lib/networks/renderer/if_mesh_renderer.py'
126
+
127
+ visualizer_module: 'lib.visualizers.if_nerf_mesh'
128
+ visualizer_path: 'lib/visualizers/if_nerf_mesh.py'
129
+
130
+ mesh_th: 5
131
+
132
+ test:
133
+ sampler: 'FrameSampler'
134
+ frame_sampler_interval: 1
configs/snapshot_exp/snapshot_f4c.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/female-4-casual'
8
+ human: 'female-4-casual'
9
+ ann_file: 'data/people_snapshot/female-4-casual/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/female-4-casual'
14
+ human: 'female-4-casual'
15
+ ann_file: 'data/people_snapshot/female-4-casual/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 200
21
+ begin_ith_frame: 10
configs/snapshot_exp/snapshot_f6p.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/female-6-plaza'
8
+ human: 'female-6-plaza'
9
+ ann_file: 'data/people_snapshot/female-6-plaza/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/female-6-plaza'
14
+ human: 'female-6-plaza'
15
+ ann_file: 'data/people_snapshot/female-6-plaza/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 240
configs/snapshot_exp/snapshot_f7p.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/female-7-plaza'
8
+ human: 'female-7-plaza'
9
+ ann_file: 'data/people_snapshot/female-7-plaza/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/female-7-plaza'
14
+ human: 'female-7-plaza'
15
+ ann_file: 'data/people_snapshot/female-7-plaza/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 185
configs/snapshot_exp/snapshot_f8p.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/female-8-plaza'
8
+ human: 'female-8-plaza'
9
+ ann_file: 'data/people_snapshot/female-8-plaza/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/female-8-plaza'
14
+ human: 'female-8-plaza'
15
+ ann_file: 'data/people_snapshot/female-8-plaza/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 200
configs/snapshot_exp/snapshot_m2c.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/male-2-casual'
8
+ human: 'male-2-casual'
9
+ ann_file: 'data/people_snapshot/male-2-casual/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/male-2-casual'
14
+ human: 'male-2-casual'
15
+ ann_file: 'data/people_snapshot/male-2-casual/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 180
configs/snapshot_exp/snapshot_m2o.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/male-2-outdoor'
8
+ human: 'male-2-outdoor'
9
+ ann_file: 'data/people_snapshot/male-2-outdoor/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/male-2-outdoor'
14
+ human: 'male-2-outdoor'
15
+ ann_file: 'data/people_snapshot/male-2-outdoor/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 150
configs/snapshot_exp/snapshot_m3c.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/male-3-casual'
8
+ human: 'male-3-casual'
9
+ ann_file: 'data/people_snapshot/male-3-casual/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/male-3-casual'
14
+ human: 'male-3-casual'
15
+ ann_file: 'data/people_snapshot/male-3-casual/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 235
configs/snapshot_exp/snapshot_m5o.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/snapshot_exp/snapshot_f3c.yaml'
5
+
6
+ train_dataset:
7
+ data_root: 'data/people_snapshot/male-5-outdoor'
8
+ human: 'male-5-outdoor'
9
+ ann_file: 'data/people_snapshot/male-5-outdoor/params.npy'
10
+ split: 'train'
11
+
12
+ test_dataset:
13
+ data_root: 'data/people_snapshot/male-5-outdoor'
14
+ human: 'male-5-outdoor'
15
+ ann_file: 'data/people_snapshot/male-5-outdoor/params.npy'
16
+ split: 'test'
17
+
18
+ # data options
19
+ ratio: 1.
20
+ num_train_frame: 295
configs/zju_mocap_exp/latent_xyzc_313.yaml ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.multi_view_dataset'
5
+ train_dataset_path: 'lib/datasets/light_stage/multi_view_dataset.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.multi_view_dataset'
7
+ test_dataset_path: 'lib/datasets/light_stage/multi_view_dataset.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.if_nerf'
18
+ evaluator_path: 'lib/evaluators/if_nerf.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf'
21
+ visualizer_path: 'lib/visualizers/if_nerf.py'
22
+
23
+ human: 313
24
+
25
+ train_dataset:
26
+ data_root: 'data/zju_mocap/CoreView_313'
27
+ human: 'CoreView_313'
28
+ ann_file: 'data/zju_mocap/CoreView_313/annots.npy'
29
+ split: 'train'
30
+
31
+ test_dataset:
32
+ data_root: 'data/zju_mocap/CoreView_313'
33
+ human: 'CoreView_313'
34
+ ann_file: 'data/zju_mocap/CoreView_313/annots.npy'
35
+ split: 'test'
36
+
37
+ train:
38
+ batch_size: 1
39
+ collator: ''
40
+ lr: 5e-4
41
+ weight_decay: 0
42
+ epoch: 400
43
+ scheduler:
44
+ type: 'exponential'
45
+ gamma: 0.1
46
+ decay_epochs: 1000
47
+ num_workers: 16
48
+
49
+ test:
50
+ sampler: 'FrameSampler'
51
+ batch_size: 1
52
+ collator: ''
53
+
54
+ ep_iter: 500
55
+ save_ep: 1000
56
+ eval_ep: 1000
57
+
58
+ # rendering options
59
+ i_embed: 0
60
+ xyz_res: 10
61
+ view_res: 4
62
+ raw_noise_std: 0
63
+
64
+ N_samples: 64
65
+ N_importance: 128
66
+ N_rand: 1024
67
+
68
+ perturb: 1
69
+ white_bkgd: False
70
+
71
+ num_render_views: 50
72
+
73
+ # data options
74
+ H: 1024
75
+ W: 1024
76
+ ratio: 0.5
77
+ training_view: [0, 6, 12, 18]
78
+ num_train_frame: 60
79
+ num_novel_pose_frame: 1000
80
+ smpl: 'smpl'
81
+ params: 'params'
82
+
83
+ voxel_size: [0.005, 0.005, 0.005] # dhw
84
+
85
+ # record options
86
+ log_interval: 1
87
+
88
+
89
+ novel_view_cfg:
90
+ train_dataset_module: 'lib.datasets.light_stage.multi_view_demo_dataset'
91
+ train_dataset_path: 'lib/datasets/light_stage/multi_view_demo_dataset.py'
92
+ test_dataset_module: 'lib.datasets.light_stage.multi_view_demo_dataset'
93
+ test_dataset_path: 'lib/datasets/light_stage/multi_view_demo_dataset.py'
94
+
95
+ renderer_module: 'lib.networks.renderer.if_clight_renderer_mmsk'
96
+ renderer_path: 'lib/networks/renderer/if_clight_renderer_mmsk.py'
97
+
98
+ visualizer_module: 'lib.visualizers.if_nerf_demo'
99
+ visualizer_path: 'lib/visualizers/if_nerf_demo.py'
100
+
101
+ test:
102
+ sampler: ''
103
+
104
+ rotate_smpl_cfg:
105
+ train_dataset_module: 'lib.datasets.light_stage.rotate_smpl_dataset'
106
+ train_dataset_path: 'lib/datasets/light_stage/rotate_smpl_dataset.py'
107
+ test_dataset_module: 'lib.datasets.light_stage.rotate_smpl_dataset'
108
+ test_dataset_path: 'lib/datasets/light_stage/rotate_smpl_dataset.py'
109
+
110
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
111
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
112
+
113
+ visualizer_module: 'lib.visualizers.if_nerf_demo'
114
+ visualizer_path: 'lib/visualizers/if_nerf_demo.py'
115
+
116
+ test:
117
+ sampler: ''
118
+
119
+ novel_pose_cfg:
120
+ train_dataset_module: 'lib.datasets.light_stage.multi_view_perform_dataset'
121
+ train_dataset_path: 'lib/datasets/light_stage/multi_view_perform_dataset.py'
122
+ test_dataset_module: 'lib.datasets.light_stage.multi_view_perform_dataset'
123
+ test_dataset_path: 'lib/datasets/light_stage/multi_view_perform_dataset.py'
124
+
125
+ renderer_module: 'lib.networks.renderer.if_clight_renderer_mmsk'
126
+ renderer_path: 'lib/networks/renderer/if_clight_renderer_mmsk.py'
127
+
128
+ visualizer_module: 'lib.visualizers.if_nerf_perform'
129
+ visualizer_path: 'lib/visualizers/if_nerf_perform.py'
130
+
131
+ test:
132
+ sampler: ''
133
+
134
+ mesh_cfg:
135
+ train_dataset_module: 'lib.datasets.light_stage.multi_view_mesh_dataset'
136
+ train_dataset_path: 'lib/datasets/light_stage/multi_view_mesh_dataset.py'
137
+ test_dataset_module: 'lib.datasets.light_stage.multi_view_mesh_dataset'
138
+ test_dataset_path: 'lib/datasets/light_stage/multi_view_mesh_dataset.py'
139
+
140
+ network_module: 'lib.networks.latent_xyzc'
141
+ network_path: 'lib/networks/latent_xyzc.py'
142
+ renderer_module: 'lib.networks.renderer.if_mesh_renderer'
143
+ renderer_path: 'lib/networks/renderer/if_mesh_renderer.py'
144
+
145
+ visualizer_module: 'lib.visualizers.if_nerf_mesh'
146
+ visualizer_path: 'lib/visualizers/if_nerf_mesh.py'
147
+
148
+ mesh_th: 5
149
+
150
+ test:
151
+ sampler: 'FrameSampler'
152
+ frame_sampler_interval: 1
configs/zju_mocap_exp/latent_xyzc_315.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 315
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_315'
10
+ human: 'CoreView_315'
11
+ ann_file: 'data/zju_mocap/CoreView_315/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_315'
16
+ human: 'CoreView_315'
17
+ ann_file: 'data/zju_mocap/CoreView_315/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 400
configs/zju_mocap_exp/latent_xyzc_377.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 377
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_377'
10
+ human: 'CoreView_377'
11
+ ann_file: 'data/zju_mocap/CoreView_377/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_377'
16
+ human: 'CoreView_377'
17
+ ann_file: 'data/zju_mocap/CoreView_377/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 300
configs/zju_mocap_exp/latent_xyzc_386.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 386
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_386'
10
+ human: 'CoreView_386'
11
+ ann_file: 'data/zju_mocap/CoreView_386/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_386'
16
+ human: 'CoreView_386'
17
+ ann_file: 'data/zju_mocap/CoreView_386/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 300
configs/zju_mocap_exp/latent_xyzc_387.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 387
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_387'
10
+ human: 'CoreView_387'
11
+ ann_file: 'data/zju_mocap/CoreView_387/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_387'
16
+ human: 'CoreView_387'
17
+ ann_file: 'data/zju_mocap/CoreView_387/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 300
configs/zju_mocap_exp/latent_xyzc_390.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 390
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_390'
10
+ human: 'CoreView_390'
11
+ ann_file: 'data/zju_mocap/CoreView_390/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_390'
16
+ human: 'CoreView_390'
17
+ ann_file: 'data/zju_mocap/CoreView_390/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 300
22
+ begin_ith_frame: 700
23
+ num_novel_pose_frame: 700
configs/zju_mocap_exp/latent_xyzc_392.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 392
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_392'
10
+ human: 'CoreView_392'
11
+ ann_file: 'data/zju_mocap/CoreView_392/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_392'
16
+ human: 'CoreView_392'
17
+ ann_file: 'data/zju_mocap/CoreView_392/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 300
configs/zju_mocap_exp/latent_xyzc_393.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 393
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_393'
10
+ human: 'CoreView_393'
11
+ ann_file: 'data/zju_mocap/CoreView_393/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_393'
16
+ human: 'CoreView_393'
17
+ ann_file: 'data/zju_mocap/CoreView_393/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 300
configs/zju_mocap_exp/latent_xyzc_394.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 394
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_394'
10
+ human: 'CoreView_394'
11
+ ann_file: 'data/zju_mocap/CoreView_394/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_394'
16
+ human: 'CoreView_394'
17
+ ann_file: 'data/zju_mocap/CoreView_394/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 300
configs/zju_mocap_exp/latent_xyzc_395.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 395
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_395'
10
+ human: 'CoreView_395'
11
+ ann_file: 'data/zju_mocap/CoreView_395/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_395'
16
+ human: 'CoreView_395'
17
+ ann_file: 'data/zju_mocap/CoreView_395/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 300
configs/zju_mocap_exp/latent_xyzc_396.yaml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 396
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_396'
10
+ human: 'CoreView_396'
11
+ ann_file: 'data/zju_mocap/CoreView_396/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_396'
16
+ human: 'CoreView_396'
17
+ ann_file: 'data/zju_mocap/CoreView_396/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 540
22
+ begin_ith_frame: 810
configs/zju_mocap_exp/xyzc_rotate_demo_313.yaml ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ train_dataset_module: 'lib.datasets.light_stage.can_smpl_demo'
5
+ train_dataset_path: 'lib/datasets/light_stage/can_smpl_demo.py'
6
+ test_dataset_module: 'lib.datasets.light_stage.rotate_smpl'
7
+ test_dataset_path: 'lib/datasets/light_stage/rotate_smpl.py'
8
+
9
+ network_module: 'lib.networks.latent_xyzc'
10
+ network_path: 'lib/networks/latent_xyzc.py'
11
+ renderer_module: 'lib.networks.renderer.if_clight_renderer'
12
+ renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
13
+
14
+ trainer_module: 'lib.train.trainers.if_nerf_clight'
15
+ trainer_path: 'lib/train/trainers/if_nerf_clight.py'
16
+
17
+ evaluator_module: 'lib.evaluators.if_nerf'
18
+ evaluator_path: 'lib/evaluators/if_nerf.py'
19
+
20
+ visualizer_module: 'lib.visualizers.if_nerf_demo'
21
+ visualizer_path: 'lib/visualizers/if_nerf_demo.py'
22
+
23
+ human: 313
24
+
25
+ train:
26
+ dataset: Human313_0001_Train
27
+ batch_size: 1
28
+ collator: ''
29
+ lr: 5e-4
30
+ weight_decay: 0
31
+ epoch: 400
32
+ scheduler:
33
+ type: 'exponential'
34
+ gamma: 0.1
35
+ decay_epochs: 1000
36
+ num_workers: 16
37
+
38
+ test:
39
+ dataset: Human313_0001_Test
40
+ batch_size: 1
41
+ collator: ''
42
+
43
+ ep_iter: 500
44
+ save_ep: 1000
45
+ eval_ep: 1000
46
+
47
+ # training options
48
+ netdepth: 8
49
+ netwidth: 256
50
+ netdepth_fine: 8
51
+ netwidth_fine: 256
52
+ netchunk: 65536
53
+ chunk: 32768
54
+
55
+ no_batching: True
56
+
57
+ precrop_iters: 500
58
+ precrop_frac: 0.5
59
+
60
+ # network options
61
+ point_feature: 6
62
+
63
+ # rendering options
64
+ use_viewdirs: True
65
+ i_embed: 0
66
+ xyz_res: 10
67
+ view_res: 4
68
+ raw_noise_std: 0
69
+
70
+ N_samples: 64
71
+ N_importance: 128
72
+ N_rand: 1024
73
+
74
+ near: 1
75
+ far: 3
76
+
77
+ perturb: 1
78
+ white_bkgd: False
79
+
80
+ render_views: 50
81
+
82
+ # data options
83
+ res: 256
84
+ ratio: 0.5
85
+ intv: 6
86
+ ni: 60
87
+ smpl: 'smpl'
88
+ params: 'params'
89
+
90
+ voxel_size: [0.005, 0.005, 0.005] # dhw
91
+
92
+ # record options
93
+ log_interval: 1
configs/zju_mocap_frame1_exp/latent_xyzc_313_ni1.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 313
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_313'
10
+ human: 'CoreView_313'
11
+ ann_file: 'data/zju_mocap/CoreView_313/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_313'
16
+ human: 'CoreView_313'
17
+ ann_file: 'data/zju_mocap/CoreView_313/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 1
configs/zju_mocap_frame1_exp/latent_xyzc_315_ni1.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: 'if_nerf'
2
+ gpus: [0]
3
+
4
+ parent_cfg: 'configs/zju_mocap_exp/latent_xyzc_313.yaml'
5
+
6
+ human: 315
7
+
8
+ train_dataset:
9
+ data_root: 'data/zju_mocap/CoreView_315'
10
+ human: 'CoreView_315'
11
+ ann_file: 'data/zju_mocap/CoreView_315/annots.npy'
12
+ split: 'train'
13
+
14
+ test_dataset:
15
+ data_root: 'data/zju_mocap/CoreView_315'
16
+ human: 'CoreView_315'
17
+ ann_file: 'data/zju_mocap/CoreView_315/annots.npy'
18
+ split: 'test'
19
+
20
+ # data options
21
+ num_train_frame: 1